Skip to main content

Robotics Insights for the Modeling of Visually Guided Hand Movements in Primates

  • Chapter

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 357))

Abstract

In this chapter we focus on the modeling of cortical activity related to planning and control of visually guided reaching hand movements in primates. We bring a new light to this problem by considering the visual-servoing framework in robotics. A review of representative theories and models describing the neuronal processes related to 3D representation of space, motor control and visuomotor integration in Neuroscience is first presented. The kinematics and dynamics of manipulators and the basics of visual-servoing techniques in robotics are then recalled. In particular, for the control of a robotic arm with a deported camera, we underline the fact that the task-Jacobian is dependent on all the joints of the kinematic chain linking the camera to the end-effector. This point suggests that the motor activity during a visually guided movement of the hand cannot be completely encoded within a body-centered reference frame as claimed by numerous models in Neuroscience. Finally, we present an experimental result showing the existence of gaze-related signals in the monkey premotor cortex during visually guided reaching. This result corroborates the idea that the eye position with respect to the head and the head position with respect to the body, which belong to the kinematic chain linking the eye to the hand, must also be coded by neurons in premotor and motor cortex.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen R A, Mountcastle V B, (1983) The influence of the angle of gaze upon the excitability of the light-sensitive neurons of the posterior parietal cortex, J. Neurosci. 3:532–548.

    Google Scholar 

  2. Andersen R, Essick G K, Siegel R M (1985) Encoding of spatial location by posterior parietal neurons, Science 230:456–458.

    Article  Google Scholar 

  3. Andersen R A, Gnadt J W (1989) Posterior parietal cortex, Rev. Oculomot. Res. 3:315–335.

    Google Scholar 

  4. Andersen R A (1997). “Multimodal integration for the representation of space in the posterior parietal cortex.” Philos Trans R Soc Lond B Biol Sci 352(1360): 1421–8.

    Article  Google Scholar 

  5. Asada H, Slotine J J, (1986) Robot Analysis and control, New York, Wiley.

    Google Scholar 

  6. Baker J T, Donoghue J P, Sanes J N, (1999) Gaze direction modulates finger movement activation patterns in human cerebral cortex, J. Neurosci., 19: 10044–10052.

    Google Scholar 

  7. Bizzi E, Mussa-Ivaldi F, Gitzer (1991) Computations underlying the execution of movemenyt: a biological perspective. Science 253: 287–291.

    Article  Google Scholar 

  8. Boussaoud D, Barth T M, Wise S P (1993) Effects of gaze on apparent visual responses of frontal cortex neurons, Exp. Brain Res., 93: 423–434.

    Article  Google Scholar 

  9. Boussaoud D (1995) Primate premotor cortex: Modulation of preparatory neuronal activity by gaze angle, J. Neurophysiol., 73:886–890.

    Google Scholar 

  10. Boussaoud D, Jouffrais C, Bremmer F (1998) Eye position effects on the neuronal activity of dorsal premotor cortex in the macaque monkey, J. Neurophysiol., 80 1132–1150.

    Google Scholar 

  11. Bremmer F (2000) Eye position effects in macaque area V4. Neuroreport 11(6): 1277–83.

    Article  Google Scholar 

  12. Brotchie P R, Andersen R A, Snyder L H, Goodman S J (1995) Head position signals used by parietal neurons to encode locations of visual stimuli, Nature, 375:232–235.

    Article  Google Scholar 

  13. Bueno C A, Jarvis M R, Batista A P, Andersen R A, (2002) Direct visuomotor transformations for reaching. Nature 416, 632–636.

    Article  Google Scholar 

  14. Caminiti R, Johnson P B, Urbano A (1990) Making arm movements within different parts of space: dynamic aspects in the primate motor cortex. Journal of Neuroscience 10, 2039–2058

    Google Scholar 

  15. Caminiti R, Johnson P B, Galli C, Ferraina S, Burnod Y (1991) Making arm movements within different parts of space: the premotor and motor cortical representation of a coordinate system for reaching to visual targets, J. Neurosci., 11:1182–1197.

    Google Scholar 

  16. Chaumette F (1990) La relation vision-commande: theorie et application des tches robotiques, PhD Thesis, University of Rennes France, IRISA.

    Google Scholar 

  17. Cisek P, Kalaska J F (2002) Modest gaze-related discharge modulation in monkey dorsal premotor cortex during a reaching task performed with free fixation. J. Neurophysiol. 88: 1064–1072.

    Article  Google Scholar 

  18. Cohen Y E, Andersen R A (2002) A common reference frame for movement plans in the posterior parietal cortex. Nat Rev Neurosci. 3(7):553–562.

    Article  Google Scholar 

  19. Colby C L, Duhamel J R, Goldberg M E (1993), Ventral intraparietal area of the macaque: Anatomic location and visual response properties. J. Neurophysiol. 69:902–914.

    Google Scholar 

  20. Craig J J (1989) Introduction to robotics: Mechanics and control, 2nd Edition. Reading MA: Addison Wesley.

    MATH  Google Scholar 

  21. Espiau B, Chaumette F, Rives P (1992) A new approach to visual servoing in robotics, IEEE Trans. On Robotics and Automation, 8(6):313–326.

    Article  Google Scholar 

  22. Fogassi L, Gallese V, Fadiga L, Luppino G, Matelli M, Rizzolatti G (1996) Coding of peripersonal space in inferior premotor cortex (area F4), J. Neurophysiol., 76:141–157.

    Google Scholar 

  23. Galetti C, Battaglini P P (1989) Gaze-dependent visual neurons in area V3A of monkey prestiate cortex. J. Neurosci. 9:1112–1125.

    Google Scholar 

  24. Galetti C, Battaglini P P, Fattori P (1995) Eye position influence on the parietooccipital area PO (V6) of the macaque monkey. Eur. J. Neurosci. 7:2486–2501.

    Article  Google Scholar 

  25. Georgopoulos A P, Kalaska J F, Caminiti R, Massey J T (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex, J. Neurosci., 2:1527–1537.

    Google Scholar 

  26. Georgopoulos A P, Schwartz A B, Kettner R E (1986). Neuronal population coding of movement direction. Science 233, 1416–1419.

    Article  Google Scholar 

  27. Gnadt J W, Mays L E (1995) Neurons in monkey parietal area LIP are tuned for eye-movement parameters in three-dimensional space. J. Neurophysiol. 73:280–297.

    Google Scholar 

  28. Graziano M S, Yap G S, Gross C G (1994) Coding of visual space by premotor neurons., Science, 266:1054–1057.

    Article  Google Scholar 

  29. Hollerbach J M, Flash T (1982) Dynamic interactions between limb segments during planar arm movements, Biol. Cybernet. 44:67–77.

    Article  Google Scholar 

  30. Johnson P B, Ferraina S, Bianchi L, Caminiti R (1996) Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal lobe arm regions. Cerebral Cortex 6:102–119

    Article  Google Scholar 

  31. Jouffrais C, Boussaoud D (1999) Neuronal activity related to eye-hand coordination in the primate premotor cortex. Exp Brain Res 128: 205–209.

    Article  Google Scholar 

  32. Jouffrais C, Rouiller E M, Boussaoud D (2000) The dorsal premotor cortex: gaze signals and directional coding. Abstract of the Society for Neuroscience 26(1), 180. New Orleans, USA.

    Google Scholar 

  33. Kakei S, Hoffman D S, Strick P L (1999) Muscle and movement representation in the primary motor cortex. Science 285: 2136–2139

    Article  Google Scholar 

  34. Karnath H O, M. T. Perenin (2005) Cortical control of visually guided reaching: Evidence from patients with optic ataxia, Cereb. Cortex, 15: 1561–1569.

    Article  Google Scholar 

  35. Martinet P, Gallice J, Khadraoui D (1996) Vision based control law usin 3D visual features, World Automatic Congres, WAC’96, Robotics and Manufacturing Systems, Montpellier France, Vol. 3:497–502.

    Google Scholar 

  36. Moran D W, Schwartz A B (1999) Motor cortical representation of speed and direction during reaching, J. Neurophysiol. 82:2676–2692.

    Google Scholar 

  37. Mussa-Ivaldi F A, Bizzi E (2000) Motor learning through the combination of primitives,” Phil. Tran. R. Soc. Lond. B 355:1755–1769.

    Article  Google Scholar 

  38. Nakamura Y (1991) Advanced Robotics: Redundancy and Optimization, Reading MA, Addison Wesley.

    Google Scholar 

  39. Newsome W T, Wurtz R H, Komatsu H (1988) Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs. J. Neurophysiol. 60:604–644.

    Google Scholar 

  40. Nowicka A, Ringo J L (2000) Eye position-sensitive units in hippocampal formation and in inferotemporal cortex of the macaque monkey.” Europ. J. Of Neurosc. 12: 751–759.

    Article  Google Scholar 

  41. Pouget A, Deneve S, Duhamel J R (2002) A computational perspective on the neural basis of multisensory spatial representations, Nat. Rev. Neurosci., 3: 741–747.

    Article  Google Scholar 

  42. Pouget A, Ducom J C, Torri J, Bavelier D, (2002) Multisensory spatial representations in eye-centered coordinates for reaching. Cognition 83:1–11.

    Article  Google Scholar 

  43. Samson C, Le Borgne M, Espiau B (1991) Robot Control, The task function approach, Clarendon Press, Oxford.

    Google Scholar 

  44. Scott S H, Kalaska J F (1997) Reaching movements with similar hand paths but different arm orientations, I, Activity of individual cells in motor cortex. J Neurophysiol 77, 826–852.

    Google Scholar 

  45. Shen L, Alexander G E (1997) Preferential representation of instructed target location versus limb trajectory in dorsal premotor area. J. Neurophysiol. 77: 1195–1212.

    Google Scholar 

  46. Shadmehr R, Wise S P (2005) The Computational Neurobiology of Reaching and Pointing: A Foundation for Motor Learning, The MIT Press.

    Google Scholar 

  47. Spong M W, Vidyasagar M (1989) Robot dynamics and control, New York, Wiley.

    Google Scholar 

  48. Stricanne B, Andersen R A, Mazzoni P (1996) Eye-centered, head-centered, and intermediate coding of remembered sound locations in area LIP. J Neurophysiol. 76(3):2071–2076.

    Google Scholar 

  49. Schwartz A B, Moran D W, Reina G A (2004) Differential representation of perception and action in frontal motor cortex. Science 303, 380–383.

    Article  Google Scholar 

  50. Trotter Y, Celebrini S, Stricanne B, Thorpe S, Imbert M (1992) Modulation of neural stereoscopic processing in primate area V1 by the viewing distance, Science 257:1279–1281.

    Article  Google Scholar 

  51. Trotter Y, Celebrini S, Stricanne B, Thorpe S, Imbert M (1996) Neural processing of stereopsis as a function of viewing distance in primate visual cortical area V1. J. Neurophysiol. 76:2872–2885.

    Google Scholar 

  52. Trotter Y, Celebrini S (1999) Gaze direction controls response gain in primary visual-cortex neurons, Nature 398:239–242.

    Article  Google Scholar 

  53. Wang Y, Celebrini S, Trotter Y, Barone P (2005) Multisensory integration in the behaving monkey: behavioral analysis and electrophysiological evidence in the primary visual cortex. Soc. Neurosc. Washington.

    Google Scholar 

  54. Wise S P, Boussaoud D, Johnson P B, Caminiti R (1997). Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. Annual Review of Neuroscience 20, 25–42.

    Article  Google Scholar 

  55. Zipser D, Andersen R A (1988) A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons, Nature, 331:679–684.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Souères, P., Jouffrais, C., Celebrini, S., Trotter, Y. (2007). Robotics Insights for the Modeling of Visually Guided Hand Movements in Primates. In: Queinnec, I., Tarbouriech, S., Garcia, G., Niculescu, SI. (eds) Biology and Control Theory: Current Challenges. Lecture Notes in Control and Information Sciences, vol 357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71988-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71988-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71987-8

  • Online ISBN: 978-3-540-71988-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics