Programming a Parallel Computer: The Ersatz Brain Project

  • James A. Anderson
  • Paul Allopenna
  • Gerald S. Guralnik
  • David Sheinberg
  • John A. SantiniJr.
  • Socrates Dimitriadis
  • Benjamin B. Machta
  • Brian T. Merritt
Part of the Studies in Computational Intelligence book series (SCI, volume 63)


There is a complex relationship between the architecture of a computer, the software it needs to run, and the tasks it performs. The most difficult aspect of building a brain-like computer may not be in its construction, but in its use: How can it be programmed? What can it do well? What does it do poorly? In the history of computers, software development has proved far more difficult and far slower than straightforward hardware development. There is no reason to expect a brain like computer to be any different. This chapter speculates about its basic design, provides examples of “programming” and suggests how intermediate level structures could arise in a sparsely connected massively parallel, brain like computer using sparse data representations.


Parallel Computer Data Representation Vocal Tract Sparse Code Module Assembly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Sloman, S.: Causal Models: How People Think About the World and Its Alternatives. Oxford University Press, New York (2005)Google Scholar
  2. [2]
    Anderson, J.A., Sutton, J.P.: If We Compute Faster, Do We Understand Better? Behavior Research Methods, Instruments, and Computers. 29 (1997)67-77 Google Scholar
  3. [3]
    Anderson, J.A. Arithmetic on a Parallel Computer: Perception Versus Logic. Brain and Mind. 4 (2003) 169-188 CrossRefGoogle Scholar
  4. [4]
    Strangman, G., Sutton, J.P.: The Behaving Human Neocortex as a Network of Networks. In: Hecht-Nielsen, R., McKenna, T. (eds.): Theories of the Cerebral Cortex. Springer, New York (2003) 205-219Google Scholar
  5. [5]
    Hopfield, J.: Neural Networks and Physical Systems with Emergent Collective Computational Abilities. Proceedings of the National Academy of Sciences. 79 (1982) 2554-2558 CrossRefMathSciNetGoogle Scholar
  6. [6]
    Anderson, J.A.: The BSB Network. In: Hassoun, M.H. (ed.): Associative Neural Networks. Oxford University Press, New York (1993) 77-103Google Scholar
  7. [7]
    Anderson, J.A.: An Introduction to Neural Networks. MIT Press, Cambridge, MA (1995) zbMATHGoogle Scholar
  8. [8]
    Mountcastle, V.B. Introduction. Cerebral Cortex. 13 (2003) 2-4 CrossRefGoogle Scholar
  9. [9]
    Hubel, D.H.,Wiesel, T.N.: Receptive Fields, Binocular Interactions, and Functional Architecture in the Cat's Visual Cortex. Journal of Physiology. 148 (1962) 106-154 Google Scholar
  10. [10]
    Kosko, B.: Bidirectional Associative Memory. IEEE Transactions on Systems, Man, and Cybernetics. 18 (1988) 49-60 CrossRefMathSciNetGoogle Scholar
  11. [11]
    Pitts, W., McCulloch, W.S.: How We Know Universals: The Perception of Auditory and Visual Forms. In: McCulloch, W.S. (ed., 1965): Embodiments of Mind. MIT Press, Cambridge, MA (1947/1965) 46-66Google Scholar
  12. [12]
    Blum, H.J.: Biological Shape and Visual Science (Part I). Journal of Theoretical Biology. 38 (1973) 205-287 CrossRefMathSciNetGoogle Scholar
  13. [13]
    Kimia, B., Tannenbaum A., Zucker, S.W.: Shapes, Shocks and Deformations {I}: The Components of Shape and the Reaction-Diffusion Space. International Journal of Computer Vision. 15 (1995) 189-224CrossRefGoogle Scholar
  14. [14]
    Bringuier, V., Chavane, F., Glaeser, L., Fregnac, Y.: Horizontal Propagation of Visual Activity in the Synaptic Integration Field of Area 17 Neurons. Science 283 (1999) 695-699 CrossRefGoogle Scholar
  15. [15]
    Lee, T.-S., Mumford, D., Romero, R., Lamme, V.A.F.: The Role of Primary Visual Cortex in Higher Level Vision. Vision Research. 38 (1998) 2429-2454 CrossRefGoogle Scholar
  16. [16]
    Lee, T.-S.: Analysis and Synthesis of Visual Images in the Brain. In: Olver, P., Tannenbaum, A. (eds): Image Analysis and the Brain. Springer, Berlin (2002) 87-106 Google Scholar
  17. [17]
    Kovacs, I., Julesz, B.: Perceptual Sensitivity Maps Within Globally Defined Shapes. Nature. 370 (1994) 644-6 CrossRefGoogle Scholar
  18. [18]
    Kovacs, I., Feher, A., Julesz, B.: Medial Point Description of Shape: A Representation for Action Coding and its Psychophysical Correlates. Vision Research. 38 (1998) 2323-2333 CrossRefGoogle Scholar
  19. [19]
    Anderson, J.A.: Seven times seven is About Fifty. In: Scarborough, D., Sternberg, S. (eds.): Invitation to Cognitive Science, Volume 4. MIT Press, Cambridge, MA (1998) 255-299 Google Scholar
  20. [20]
    Hadamard, J.: The Psychology of Invention in the Mathematical Field. Dover, New York (1949)Google Scholar
  21. [21]
    Murphy, G.L.: The Big Book of Concepts. MIT Press, Cambridge, MA (2002)Google Scholar
  22. [22]
    Watrous, R.L.: Current Status of Peterson-Barney Vowel Formant Data. Journal of the Acoustical Society of America. 89 (1991) 2459-2460 CrossRefGoogle Scholar
  23. [23]
    Peterson, G.E., Barney, H.L.: Control Methods Used in a Study of the Vowels. Journal of the Acoustical Society of America. 24 (1952)175-184 CrossRefGoogle Scholar
  24. [24]
    Talavage, T.M., Sereno, M.I., Melcher, J.R., Ledden, P.J., Rosen, B.R., Dale, A.M.: Tonotopic Organization in Human Auditory Cortex Revealed by Progressions of Frequency Sensitivity. Journal of Neurophysiology. 91 (2004) 1292-1296 Google Scholar
  25. [25]
    Olshausen, B.A., Field, D.J.: Sparse Coding of Sensor Inputs. Current Opinions in Neurobiology. 14 (2004) 481-487 CrossRefGoogle Scholar
  26. [26]
    Barlow, H.B.: Single Units and Sensation: A Neuron Doctrine for Perceptual Psychology? Perception 1 (1972) 371-394 CrossRefGoogle Scholar
  27. [27]
    Vincent, B.T., Baddeley, R.J., Troscianko, T., Gilchrist, I.D.: Is the Early Visual System Optimized to be Energy Efficient? Network: Computational neural systems. (In press)Google Scholar
  28. [28]
    Cooper, L.N., Intrator, N., Blais, B.S., Shoval, H.Z.: Theory of Cortical Plasticity. World Scientific Publishing, Singapore (2004) zbMATHGoogle Scholar
  29. [29]
    Tsunoda, K., Yamane, Y., Nishizaki, M., Tanifuji, M.: Complex Objects are Represented in Macaque Inferotemporal Cortex by the Combination of Feature Columns. Nature Neuroscience. 4 (2003) 832-838CrossRefGoogle Scholar
  30. [30]
    Tanaka, K.: Inferotemporal Cortex and Object Vision. In: Cowan, W.M., Shooter, E.M., Stevens, C.F., Thompson, R.F. (eds.): Annual Review of Neuroscience. 19 (1996) 109-139 Google Scholar
  31. [31]
    Tanaka, K.: Columns for Complex Visual Object Features in Inferotemporal Cortex: Clustering of cells with similar but slightly different stimulus selectivities. Cerebral Cortex. 13 (2003) 90-99 CrossRefGoogle Scholar
  32. [32]
    Hebb, D.O.: The Organization of Behavior. Wiley, New York (1949) Google Scholar
  33. [33]
    Lund, J.S., Angelucci, A., Bressloff, P.C.: Anatomical Substrates for Functional Columns in Macaque Monkey Primary Visual Cortex. Cerebral Cortex. 13 (2003) 15-24 CrossRefGoogle Scholar
  34. [34]
    Szentagothai, J.: Specificity Versus (Quasi-) Randomness in Cortical Connectivity. In: Brazier, M.A.B., Petsche, H. (eds,) Architectonics of the Cerebral Cortex. Raven, New York (1978) 77-97 Google Scholar
  35. [35]
    Geman, S.: Invariance and Selectivity in the Ventral Visual Pathway. Division of Applied Mathematics, Brown University, Providence, RI. (in preparation)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • James A. Anderson
    • 1
  • Paul Allopenna
    • 2
  • Gerald S. Guralnik
    • 3
  • David Sheinberg
    • 4
  • John A. SantiniJr.
    • 5
  • Socrates Dimitriadis
    • 6
  • Benjamin B. Machta
    • 7
  • Brian T. Merritt
    • 8
  1. 1.Department of Cognitive and Linguistic SciencesBrown UniversityProvidenceUSA
  2. 2.Aptima, Inc.WoburnUSA
  3. 3.Department of PhysicsBrown UniversityProvidenceUSA
  4. 4.Department of NeuroscienceBrown UniversityProvidenceUSA
  5. 5.Department of Cognitive and Linguistic SciencesBrown UniversityProvidenceUSA
  6. 6.Department of Cognitive and Linguistic SciencesBrown UniversityProvidenceUSA
  7. 7.Department of PhysicsBrown UniversityProvidenceUSA
  8. 8.Department of Cognitive and Linguistic SciencesBrown UniversityProvidenceUSA

Personalised recommendations