Skip to main content

Programming a Parallel Computer: The Ersatz Brain Project

  • Chapter
Challenges for Computational Intelligence

Summary

There is a complex relationship between the architecture of a computer, the software it needs to run, and the tasks it performs. The most difficult aspect of building a brain-like computer may not be in its construction, but in its use: How can it be programmed? What can it do well? What does it do poorly? In the history of computers, software development has proved far more difficult and far slower than straightforward hardware development. There is no reason to expect a brain like computer to be any different. This chapter speculates about its basic design, provides examples of “programming” and suggests how intermediate level structures could arise in a sparsely connected massively parallel, brain like computer using sparse data representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sloman, S.: Causal Models: How People Think About the World and Its Alternatives. Oxford University Press, New York (2005)

    Google Scholar 

  2. Anderson, J.A., Sutton, J.P.: If We Compute Faster, Do We Understand Better? Behavior Research Methods, Instruments, and Computers. 29 (1997)67-77

    Google Scholar 

  3. Anderson, J.A. Arithmetic on a Parallel Computer: Perception Versus Logic. Brain and Mind. 4 (2003) 169-188

    Article  Google Scholar 

  4. Strangman, G., Sutton, J.P.: The Behaving Human Neocortex as a Network of Networks. In: Hecht-Nielsen, R., McKenna, T. (eds.): Theories of the Cerebral Cortex. Springer, New York (2003) 205-219

    Google Scholar 

  5. Hopfield, J.: Neural Networks and Physical Systems with Emergent Collective Computational Abilities. Proceedings of the National Academy of Sciences. 79 (1982) 2554-2558

    Article  MathSciNet  Google Scholar 

  6. Anderson, J.A.: The BSB Network. In: Hassoun, M.H. (ed.): Associative Neural Networks. Oxford University Press, New York (1993) 77-103

    Google Scholar 

  7. Anderson, J.A.: An Introduction to Neural Networks. MIT Press, Cambridge, MA (1995)

    MATH  Google Scholar 

  8. Mountcastle, V.B. Introduction. Cerebral Cortex. 13 (2003) 2-4

    Article  Google Scholar 

  9. Hubel, D.H.,Wiesel, T.N.: Receptive Fields, Binocular Interactions, and Functional Architecture in the Cat's Visual Cortex. Journal of Physiology. 148 (1962) 106-154

    Google Scholar 

  10. Kosko, B.: Bidirectional Associative Memory. IEEE Transactions on Systems, Man, and Cybernetics. 18 (1988) 49-60

    Article  MathSciNet  Google Scholar 

  11. Pitts, W., McCulloch, W.S.: How We Know Universals: The Perception of Auditory and Visual Forms. In: McCulloch, W.S. (ed., 1965): Embodiments of Mind. MIT Press, Cambridge, MA (1947/1965) 46-66

    Google Scholar 

  12. Blum, H.J.: Biological Shape and Visual Science (Part I). Journal of Theoretical Biology. 38 (1973) 205-287

    Article  MathSciNet  Google Scholar 

  13. Kimia, B., Tannenbaum A., Zucker, S.W.: Shapes, Shocks and Deformations {I}: The Components of Shape and the Reaction-Diffusion Space. International Journal of Computer Vision. 15 (1995) 189-224

    Article  Google Scholar 

  14. Bringuier, V., Chavane, F., Glaeser, L., Fregnac, Y.: Horizontal Propagation of Visual Activity in the Synaptic Integration Field of Area 17 Neurons. Science 283 (1999) 695-699

    Article  Google Scholar 

  15. Lee, T.-S., Mumford, D., Romero, R., Lamme, V.A.F.: The Role of Primary Visual Cortex in Higher Level Vision. Vision Research. 38 (1998) 2429-2454

    Article  Google Scholar 

  16. Lee, T.-S.: Analysis and Synthesis of Visual Images in the Brain. In: Olver, P., Tannenbaum, A. (eds): Image Analysis and the Brain. Springer, Berlin (2002) 87-106

    Google Scholar 

  17. Kovacs, I., Julesz, B.: Perceptual Sensitivity Maps Within Globally Defined Shapes. Nature. 370 (1994) 644-6

    Article  Google Scholar 

  18. Kovacs, I., Feher, A., Julesz, B.: Medial Point Description of Shape: A Representation for Action Coding and its Psychophysical Correlates. Vision Research. 38 (1998) 2323-2333

    Article  Google Scholar 

  19. Anderson, J.A.: Seven times seven is About Fifty. In: Scarborough, D., Sternberg, S. (eds.): Invitation to Cognitive Science, Volume 4. MIT Press, Cambridge, MA (1998) 255-299

    Google Scholar 

  20. Hadamard, J.: The Psychology of Invention in the Mathematical Field. Dover, New York (1949)

    Google Scholar 

  21. Murphy, G.L.: The Big Book of Concepts. MIT Press, Cambridge, MA (2002)

    Google Scholar 

  22. Watrous, R.L.: Current Status of Peterson-Barney Vowel Formant Data. Journal of the Acoustical Society of America. 89 (1991) 2459-2460

    Article  Google Scholar 

  23. Peterson, G.E., Barney, H.L.: Control Methods Used in a Study of the Vowels. Journal of the Acoustical Society of America. 24 (1952)175-184

    Article  Google Scholar 

  24. Talavage, T.M., Sereno, M.I., Melcher, J.R., Ledden, P.J., Rosen, B.R., Dale, A.M.: Tonotopic Organization in Human Auditory Cortex Revealed by Progressions of Frequency Sensitivity. Journal of Neurophysiology. 91 (2004) 1292-1296

    Google Scholar 

  25. Olshausen, B.A., Field, D.J.: Sparse Coding of Sensor Inputs. Current Opinions in Neurobiology. 14 (2004) 481-487

    Article  Google Scholar 

  26. Barlow, H.B.: Single Units and Sensation: A Neuron Doctrine for Perceptual Psychology? Perception 1 (1972) 371-394

    Article  Google Scholar 

  27. Vincent, B.T., Baddeley, R.J., Troscianko, T., Gilchrist, I.D.: Is the Early Visual System Optimized to be Energy Efficient? Network: Computational neural systems. (In press)

    Google Scholar 

  28. Cooper, L.N., Intrator, N., Blais, B.S., Shoval, H.Z.: Theory of Cortical Plasticity. World Scientific Publishing, Singapore (2004)

    MATH  Google Scholar 

  29. Tsunoda, K., Yamane, Y., Nishizaki, M., Tanifuji, M.: Complex Objects are Represented in Macaque Inferotemporal Cortex by the Combination of Feature Columns. Nature Neuroscience. 4 (2003) 832-838

    Article  Google Scholar 

  30. Tanaka, K.: Inferotemporal Cortex and Object Vision. In: Cowan, W.M., Shooter, E.M., Stevens, C.F., Thompson, R.F. (eds.): Annual Review of Neuroscience. 19 (1996) 109-139

    Google Scholar 

  31. Tanaka, K.: Columns for Complex Visual Object Features in Inferotemporal Cortex: Clustering of cells with similar but slightly different stimulus selectivities. Cerebral Cortex. 13 (2003) 90-99

    Article  Google Scholar 

  32. Hebb, D.O.: The Organization of Behavior. Wiley, New York (1949)

    Google Scholar 

  33. Lund, J.S., Angelucci, A., Bressloff, P.C.: Anatomical Substrates for Functional Columns in Macaque Monkey Primary Visual Cortex. Cerebral Cortex. 13 (2003) 15-24

    Article  Google Scholar 

  34. Szentagothai, J.: Specificity Versus (Quasi-) Randomness in Cortical Connectivity. In: Brazier, M.A.B., Petsche, H. (eds,) Architectonics of the Cerebral Cortex. Raven, New York (1978) 77-97

    Google Scholar 

  35. Geman, S.: Invariance and Selectivity in the Ventral Visual Pathway. Division of Applied Mathematics, Brown University, Providence, RI. (in preparation)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anderson, J.A. et al. (2007). Programming a Parallel Computer: The Ersatz Brain Project. In: Duch, W., Mańdziuk, J. (eds) Challenges for Computational Intelligence. Studies in Computational Intelligence, vol 63. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71984-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71984-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71983-0

  • Online ISBN: 978-3-540-71984-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics