Skip to main content

The Challenges of Building Computational Cognitive Architectures

  • Chapter
Challenges for Computational Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 63))

Summary

The work in the area of computational cognitive modeling explores the essence of cognition through developing detailed understanding of cognition by specifying computational models. In this enterprise, a cognitive architecture is a domain-generic computational cognitive model that may be used for a broad, multiple-domain analysis of cognition. It embodies generic descriptions of cognition in computer algorithms and programs. Building cognitive architectures is a difficult task and a serious challenge to the fields of cognitive science, artificial intelligence, and computational intelligence. In this article, discussions of issues and challenges in developing cognitive architectures will be undertaken, examples of cognitive architectures will be given, and future directions will be outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. R. Anderson,(1983). The Architecture of Cognition. Harvard University Press, Cambridge, MA

    Google Scholar 

  2. J. Anderson and C. Lebiere, (1998). The Atomic Components of Thought. Lawrence Erlbaum Associates, Mahwah, NJ.

    Google Scholar 

  3. J. Anderson and C. Lebiere, (2003). The Newell Test for a theory of cognition. Behavioral and Brain Sciences, 26, 587-640

    Google Scholar 

  4. S. Chaiken and Y. Trope (eds.), (1999). Dual Process Theories in Social Psychology. Guilford Press, New York.

    Google Scholar 

  5. A. Cleeremans, A. Destrebecqz and M. Boyer, (1998). Implicit learning: News from the front. Trends in Cognitive Sciences, Volume 2, Issue 10, 406-416.

    Article  Google Scholar 

  6. J. Fodor, (1983). The Modularity of Mind. MIT Press, Cambridge, MA.

    Google Scholar 

  7. G. Greene, (1999). The Elegant Universe. Norton, New York.

    MATH  Google Scholar 

  8. L. Hirschfield and S. Gelman (eds.), (1994). Mapping the Mind: Domain Specificity in Cognition and Culture. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  9. T. Johnson, (1998). Acquisition and transfer of declarative and procedural knowledge. European Conference on Cognitive Modeling, pp. 15-22. Nottingham University Press, Nottingham, UK.

    Google Scholar 

  10. A. Karmiloff-Smith, (1986). From meta-processes to conscious access: Evidence from children's metalinguistic and repair data. Cognition. 23. 95-147.

    Article  Google Scholar 

  11.  P. Langley and J. Laird, (2003). Cognitive architectures: Research issues and challenges. Unpublished manuscript.

    Google Scholar 

  12. A. Maslow, (1987). Motivation and Personality. 3rd Edition. Harper and Row, New York.

    Google Scholar 

  13. D. Medin, W. Wattenmaker, and R. Michalski, (1987). Constraints and preferences in inductive learning: An experimental study of human and machine performance. Cognitive Science. 11, 299-339.

    Article  Google Scholar 

  14. R. Michalski, (1983). A theory and methodology of inductive learning. Artificial Intelligence. Vol.20, pp. 111-161.

    Article  MathSciNet  Google Scholar 

  15. G. Miller, E. Galanter, and K. Pribram, (1960). Plans and the Structure of Behavior. Holt, Rinehart, and Winston, New York.

    Book  Google Scholar 

  16. M. Minsky, (1985). The Society of Mind. Simon and Schuster, New York.

    Google Scholar 

  17. T. Nelson, (Ed.) (1993). Metacognition: Core Readings. Allyn and Bacon.

    Google Scholar 

  18. A. Newell, (1990). Unified Theories of Cognition. Harvard University Press, Cambridge, MA.

    Google Scholar 

  19. R. Nosofsky, T. Palmeri, and S. McKinley, (1994). Rule-plus-exception model of classification learning. Psychological Review. 101 (1), 53-79.

    Article  Google Scholar 

  20. R. W. Pew and A. S. Mavor (eds), (1998). Modeling Human and Organizational Behavior: Application to Military Simulations. National Academy Press, Washington, DC.

    Google Scholar 

  21. M. R. Quillian, (1968). Semantic memory. In: M. Minsky (ed.), Semantic Information Processing. MIT Press, Cambridge, MA. pp. 227-270.

    Google Scholar 

  22. M. Rabinowitz and N. Goldberg, (1995). Evaluating the structure-process hypothesis. In: F. Weinert and W. Schneider, (eds.) Memory Performance and Competencies. Lawrence Erlbaum, Hillsdale, NJ.

    Google Scholar 

  23. A. Reber, (1989). Implicit learning and tacit knowledge. Journal of Experimental Psychology: General. 118 (3), 219-235.

    Article  Google Scholar 

  24. T. Regier,(2003). Constraining computational models of cognition.In: L. Nadel(ed.), Encyclopedia of Cognitive Science, pp.611-615. MacMillan Reference Ltd. London.

    Google Scholar 

  25. F. Ritter, Shadbolt, N., Elliman, D., Young, R., Gobet, F., and Baxter, G., (2003). Techniques for Modeling Human Performance in Synthetic Environments: A Supplementary Review. Human Systems Information Analysis Center, Wright-Patterson Air Force Base, Dayton, OH.

    Google Scholar 

  26. D. Rumelhart, J. McClelland and the PDP Research Group, (1986). Parallel Distributed Processing: Explorations in the Microstructures of Cognition. MIT Press, Cambridge, MA.

    Google Scholar 

  27. W. Schneider and W. Oliver (1991), An instructable connectionist/ control architecture. In: K. VanLehn (ed.), Architectures for Intelligence, Erlbaum, Hillsdale, NJ.

    Google Scholar 

  28. C. Seger,(1994). Implicit learning. Psychological Bulletin.115(2),163-196.

    Article  Google Scholar 

  29.  H. Simon, (1957), Models of Man, Social and Rational. Wiley, NY.

    Google Scholar 

  30.  J. D. Smith, W. E. Shields, and D. A. Washburn, (2003). The comparative psychology of uncertainty monitoring and metacognition. Behavioral and Brain Sciences, in press.

    Google Scholar 

  31. W. Stanley, R. Mathews, R. Buss, and S. Kotler-Cope, (1989). Insight without awareness: On the interaction of verbalization, instruction and practice in a simulated process control task. Quarterly Journal of Experimental Psychology. 41A (3), 553-577.

    Google Scholar 

  32. R. Sun, (1994). Integrating Rules and Connectionism for Robust Commonsense Reasoning. John Wiley and Sons, New York, NY.

    MATH  Google Scholar 

  33. R. Sun, (1995). Robust reasoning: Integrating rule-based and similarity based reasoning. Artificial Intelligence. 75, 2. 241-296.

    Article  Google Scholar 

  34. R. Sun, (2001). Does connectionism permit rule learning? INNS/ENNS/ JNNS Newsletter, No.44, pp. 2-3. 2001.

    Google Scholar 

  35. R. Sun, (2002). Duality of the Mind. Lawrence Erlbaum Associates, Mahwah, NJ.

    Google Scholar 

  36. R. Sun, (2003). A Tutorial on CLARION. Technical report, Cognitive Science Department, Rensselaer Polytechnic Institute. http://www. cogsci.rpi.edu/rsun/sun.tutorial.pdf

  37. R. Sun, (2004). Desiderata for cognitive architectures. Philosophical Psychology, 17 (3), 341-373.

    Article  Google Scholar 

  38. R. Sun and I. Naveh, (2004). Simulating organizational decision making with a cognitive architecture Clarion. Journal of Artificial Society and Social Simulation, Vol.7, No.3, June, 2004. http://jasss.soc.surrey.ac.uk/7/3/5.html

  39. R. Sun, L. A. Coward, and M. J. Zenzen, (2005). On levels of cognitive modeling. Philosophical Psychology, 18 (5), 613-637.

    Article  MATH  Google Scholar 

  40. R. Sun, V. Honavar, and G. Oden, (1999). Integration of cognitive systems across disciplinary boundaries. Cognitive Systems Research, Vol.1, No.1, pp. 1-3.

    Article  Google Scholar 

  41. R. Sun and C. Ling, (1998). Computational cognitive modeling, the source of power and other related issues. AI Magazine. Vol.19, No.2, pp. 113-120.

    Google Scholar 

  42. R. Sun, E. Merrill, and T. Peterson, (2001). From implicit skills to explicit knowledge: A bottom-up model of skill learning. Cognitive Science. Vol.25, No.2, 203-244.

    Google Scholar 

  43. R. Sun and T. Peterson, (1998). Autonomous learning of sequential tasks: experiments and analyses. IEEE Transactions on Neural Networks, Vol.9, No.6, pp. 1217-1234.

    Article  Google Scholar 

  44. R. Sun and T. Peterson, (1999). Multi-agent reinforcement learning: Weighting and partitioning. Neural Networks, Vol.12, No.4-5. pp. 127-153.

    Article  Google Scholar 

  45. R. Sun, P. Slusarz, and C. Terry, (2005). The interaction of the explicit and the implicit in skill learning: A dual-process approach. Psychological Review, 112 (1), 159-192.

    Article  Google Scholar 

  46. R. Sun and X. Zhang, (2003). Accessibility versus action-centeredness in the representation of cognitive skills. Proceedings of the Fifth International Conference on Cognitive Modeling, pp. 195-200. Universitats-Verlag Bamberg, Bamberg, Germany.

    Google Scholar 

  47. F. Toates, (1986). Motivational Systems. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  48. C. Watkins,(1989). Learning with Delayed Rewards. Ph.D Thesis, Cambridge University, Cambridge, UK.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sun, R. (2007). The Challenges of Building Computational Cognitive Architectures. In: Duch, W., Mańdziuk, J. (eds) Challenges for Computational Intelligence. Studies in Computational Intelligence, vol 63. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71984-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71984-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71983-0

  • Online ISBN: 978-3-540-71984-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics