Skip to main content

Infrared, Light, Ultraviolet, Laser- and X-ray-Tubes

  • Chapter
Vacuum Electronics
  • 2077 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Kirchhoff, R. Bunsen, Chemische Analyse durch Spectralbeobachtungen, Poggend. Annal. Bd. 110, S161–169 (1860)

    Google Scholar 

  2. M. Planck, Über das Gesetz der Energieverteilung im Normalspektrum, Drudes Annalen 553 (1901)

    Google Scholar 

  3. J.C. de Vos, A new determination of the emissivity of tungsten ribbon, Physics XX, 690–714 (1954)

    Google Scholar 

  4. A.R. Striganov, N.S. Sventitskii, Tables of Spectral Lines of Neutral and Ionized Atoms (Plenum, New York, Washington, 1968) (translated from Russian)

    Google Scholar 

  5. Atomic data can also be found on the internet, e.g. at web sites of national bureaus of standard. http://physics.nist.gov/cgi-bin/AtData/main_asd?XXR6000q3000qHgqI

  6. K.P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure IV Constants of Diatomic Molecules (Van Nordstrand Reinhold Company, New York, 1979)

    Google Scholar 

  7. W.L. Wiese, Atomic Transition Probabilities, vol. I: H through Ne. vol. II: Na through Ca (National Burea of Standards, National Standard Reference Data Series NSRDS-NBS 4, Washington, 1966)

    Google Scholar 

  8. H.S.W. Massey, E.H.S. Burhop, H.B. Gilbody, Electronic and Ionic Impact Phenomena, vol. I–V (Clarendon Press, Oxford, 1969–1974)

    Google Scholar 

  9. T.H. Maiman, Stimulated optical radiation in ruby, Nature 187, 493–494 (1960)

    Article  Google Scholar 

  10. A. Javan, W.R. Bennett Jr., D.R Herriott, Population inversion and continuous optical maser oscillation in a gas discharge containing a He–Ne mixture, Phys. Rev. Lett. 6, 106 (1961)

    Article  Google Scholar 

  11. C.H. Townes, How the Laser Happened, Adventures of a Scientist (Oxford University Press, New York, Oxford, 1999)

    Google Scholar 

  12. D. Eastham, Atomic Physics of Lasers (Taylor & Francis, London, Philadelphia, 1989)

    Google Scholar 

  13. B.A. Lengyel, Lasers, 2nd edn (Wiley-Interscience, New York, 1971)

    Google Scholar 

  14. R. Beck, W. Englisch, K. Gürs, Table of Laser Lines in Gases and Vapors (Springer, Berlin, Heidelberg, New York, 1980)

    Google Scholar 

  15. M.J. Weber, CRC Handbook of Laser Science and Technology, vol. II (Gas Lasers) (CRC Press, Boca Raton, 1982)

    Google Scholar 

  16. J.G. Eden (ed.), Selected papers on Gas Laser Technology, SPIE Milestone Series, volume MS 159 (SPIE Press, Bellingham, 2000)

    Google Scholar 

  17. R.W. Waynant, M.N. Edinger (ed.), Selected papers on UV, VUV, and X-Ray Lasers, SPIE Milestone Series, volume MS 71 (SPIE Press, Bellingham, 1993)

    Google Scholar 

  18. D.L. Matthews, P.L. Hagelstein, M.D. Rosen, M.J. Eckart, N.M. Ceglio, A.U. Hazi, H. Medecki, B.J. MacGowan, J.E. Trebes, B.L. Whitten, E.M. Campbell, C.W. Hatcher, A.M. Hawryluk, R.L. Kauffmann, L.D. Pleasance, G. Rambach, J.H. Scofield, G. Stone, T.A. Weaver, Demonstration of a soft X-ray amplifier, Phys. Rev. Lett. 54, 110–113 (1985)

    Article  Google Scholar 

  19. J.J. Rocca, V. Shlyaptsev, F.G. Tomasel, O.D. Cortazar, D. Hartshorn, J.L.A. Chilla, Demonstration of a discharge pumped table-top soft-x-ray laser, Phys. Rev. Lett. 73, 2192–2195 (1994)

    Article  Google Scholar 

  20. A.G. Molchanov, I.A. Poluektov, Y.M. Popov, The possibility of the generation of vacuum ultraviolet radiation by electron excitation of inert-gas crystals, Sov. Phys. Solid State 9, 2655 (1968)

    Google Scholar 

  21. N.G. Basov, O.V. Bogdankevich, V.A. Danilychev, A.G. Devyatkov, G.N. Kashnikov, N.P. Lantsov, Cathodoluminsecence of solid xenon in the ultraviolet region of the spectrum, JETP Lett. 7, 317–318 (1968)

    Google Scholar 

  22. P.W. Hoff, J.C. Swingle, Ch.K. Rodes, Demonstration of temporal coherence, spatial coherence, and threshold effects in the molecular xenon laser, Opt. Commun. 8, 128–131 (1973)

    Article  Google Scholar 

  23. J.B. Gerardo, A.W. Johnson, High-pressure xenon laser at 1730 Å, IEEE J. Quantum Electron. Q-9, 748–755 (1973)

    Article  Google Scholar 

  24. C.K. Rhodes (ed.), Excimer Lasers, Topics in Applied Physics, vol. 30, 2nd enlarged edn (Springer, Heidelberg, New York, Tokyo, 1984)

    Google Scholar 

  25. C.A. Brau, page 87 in [24]

    Google Scholar 

  26. S.E. Bodner, et al., High gain direct drive target design for laser fusion, Phys. Plasmas 7, 2298 (2000)

    Article  Google Scholar 

  27. F. Hegeler, M.C. Myers, M. Friedman, J.D. Sehtian, S.B. Swanekamp, D.V. Rose, D.R. Welch, Efficient electron beam deposition for repetitively pulsed krypton fluoride lasers, in Proceedings of the 14th International Conference on High-Power Particle Beams 2002, Albuquerque, NM, 23–28 June 2002, p. 357

    Google Scholar 

  28. M. Friedman, S. Swanekamp, S. Obenschain, Y. Chan, L. Ludeking, D. Smithe, Stability of large area electron beam diodes, Appl. Phys. Lett. 77, 1053 (2000)

    Article  Google Scholar 

  29. F. Hegeler, private communication

    Google Scholar 

  30. G. Marowsky, R. Cordray, F.K. Tittel, W.L. Wilson, C.B. Collins, Appl. Phys. Lett. 33(1), 60 (1978)

    Article  Google Scholar 

  31. S.J. Smith, E.M. Purcell, Phys. Rev. 92, 1069 (1953)

    Article  Google Scholar 

  32. T. di Francia, Il Nuovo Cimento 16, 1085 (1960)

    Google Scholar 

  33. Vermont Electronics homepage. www.vermontphotonics.com

  34. National Research Council, The Free Electron Laser (National Academy Press, Washington, 1982); C. Pellegrini, Encyclopedia of Applied Physics 8, 353 (1994)

    Google Scholar 

  35. M. Goldstein, J.E. Walsh, M.F. Kimmit, J. Urata, C.L. Platt, Appl. Phys. Lett. 71, 452 (1997)

    Article  Google Scholar 

  36. J.H. Brownell, J. Walsh, G. Doucas, Phys. Rev. E 57, 1075 (1998)

    Article  Google Scholar 

  37. J. Urata, Spontaneous and stimulated Smith–Purcell radiation experiments in the far infrared, Thesis, Dartmouth College, Hanover, USA, 1997

    Google Scholar 

  38. O. Haeberle, P. Rullhusen, J. Salome, N. Maene, Phys. Rev. E 49(4), 3340 (1994)

    Article  Google Scholar 

  39. J. Urata, M. Goldstein, M.F. Kimmit, C. Platt, J.E. Walsh, Phys. Rev. Lett. 516 (1998)

    Google Scholar 

  40. J.E. Walsh, J.H. Brownell, J.C. Swartz, J. Urata, M.F. Kimmit, Nucl. Instr. Methods A 429, 457 (1999)

    Article  Google Scholar 

  41. F. Floreani, H.W. Koops, W. Elsässer, Concept of a miniaturised free-electron laser with field emission source, Nucl. Instrum. Methods Phys. Res. A 483, 488–492 (2002)

    Article  Google Scholar 

  42. M.J. Moran, X-ray generation by the Smith–Purcell effect, Jpn. J. Appl. Phys. 27, 408–412 (1988)

    Article  Google Scholar 

  43. M. Schlessinger, Infrared Technology Fundamentals, 2 edn. rev. and expanded (Dekker, New York, 1995)

    Google Scholar 

  44. B. Bhanu, I. Pavlidis, Computer Vision Beyond the Visible Spectrum (Springer, London, 2005)

    Google Scholar 

  45. K. Stahl, G. Miosga, Infrarottechnik: Grundlagen, Strah lungssender und Detektoren, Infrarotbildaufnahmen und -wiedergabe, Fernmeßverfahren, 2 edn (Hüthig, Heidelberg, 1986)

    Google Scholar 

  46. R. Borchert, W. Jubitz, Infrarotstrahler: zur Erwärmung, Trocknung und Aushärtung, für die Lack-, Textil- und andere Industrien, für die Strahlentherapie, vol. 5 (Schriftenreihe des Verlages Technik, Berlin, 1951)

    Google Scholar 

  47. E. Martinet, F. Luc, E. Rosencher, P. Bois, E. Costard, S. Delaitre, E. Bockenhoff, in Intersubband Transitions in Quantum Wells, ed. by E. Rosencher, B. Vinter, B. Levine (Plenum, New York, 1992), p. 299 (in France)

    Google Scholar 

  48. S.D. Gunapala, S.V. Bandara, Quantum Well Infrared Photodetector (QWIP) Focal Plane Arrays. Semiconductors and Semimetals series, vol. 62 (1999)

    Google Scholar 

  49. Shen, et al., Appl. Phys. Lett. 83, 3118 (2003)

    Google Scholar 

  50. M. Bykhovskaia, et al., Theor. Chem. Acc. 106, 22 (2001)

    Google Scholar 

  51. P. Han, et al., Opt. Lett. 25, 242 (2000)

    Article  Google Scholar 

  52. T. Löffler, et al., Opt. Express 9(12), 616–621 (2001)

    Article  Google Scholar 

  53. Hasegawa, et al., Remote identification of surface texture, Appl. Phys. Lett. 83, 3996 (2003)

    Article  Google Scholar 

  54. S. Bollaert, et al., Fmax of 490 GHz metamorphic In Al As/In Ga As HEMT’s, Electron. Lett. 38, 389 (2002)

    Article  Google Scholar 

  55. W. Knap, et al., Terahertz emission by plasma waves in 60 nm gate High Electron Mobility Transistor, Appl. Phys. Lett. 48, 2331 (2004)

    Article  Google Scholar 

  56. R. Köhler, Quantum cascade laser, Nature 417, 156 (2002)

    Article  Google Scholar 

  57. M. Perrin, et al., JOPA Special Issue on metamaterials

    Google Scholar 

  58. Astafiev, et al., Appl. Phys. Lett. 79, 1199 (2001)

    Article  Google Scholar 

  59. J.R. Coaton, A.M. Marsden, Lamps and Lighting (Arnold and Contributors, 1997)

    Google Scholar 

  60. W. Elenbaas, Light Sources (Crane, Russek & Company, Inc., 1972)

    Google Scholar 

  61. M. Born, stelT. Jüstel stelT. Jüstel T. Jüstel, Phys. J. (February), 43 (2003)

    Google Scholar 

  62. J.A. Samson, D.L. Ederer (eds.), in Vacuum Ultraviolet Spectroscopy, vol. 1 and vol. 2, Experimental Methods in the Physical Science, vol. 31 (Academic, San Diego, London, Boston, New York, 1998)

    Google Scholar 

  63. J.A.R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy (Wiley, New York, London, Sydney, 1967)

    Google Scholar 

  64. Deuterium lamps as transfer standards for spectral radiance in the spectral range 115 nm–350 nm, Physikalisch Technische Bundesanstalt, Inst. Berlin, Abbestr. 2-12, Berlin, Germany, Final report for contract 1405/1/0/002/83/11–BCR–D(30), Sept. 29 (1987); P.J. Key, D.H. Nettleton, Deuterium lamps as transfer standards for spectral radiance measurements, National Physical Laboratory, Teddington, Middlesex TW 11 OLW, UK, Commission of the European Communities BCR information, Applied Metrology Contract No. 615/1/0/002/80/1-BCR-UK(30)

    Google Scholar 

  65. J.M. Bridges, W.R. Ott, Vacuum ultraviolet radiometry. 3: The argon mini-arc as a new secondary standard of spectral radiance, Appl. Opt. 16, 367–375 (1977)

    Google Scholar 

  66. J.A. Samson, D.L. Ederer (eds.), in Vacuum Ultraviolet Spectroscopy, vol. I, chap. 3.4, Experimental Methods in the Physical Science, vol. 31 (Academic, San Diego, London, Boston, New York, 1998)

    Google Scholar 

  67. R.A.B. Zijlmans, J.H. van Helden, D.C. Schram, R. Engeln, The cascaded arc – a novel bright light source for sensitive broadband absorption spectroscopy, P-85, page 355 in Light sources, 2004; G. Zissis, in Proceedings of the 10th International Symposium on the Science and Technology of Light Sources, Toulouse, France, 18–22 July 2004, IOP Conference Series Number 182 (Institute of Physics Publishing, Bristol and Philadelphia, 2004)

    Google Scholar 

  68. W. Weizel, Chr. Füchtbauer, Kernschwingungen im Bandenspektrum des Heliums, Z. Phys. 44, 431–434 (1927)

    Article  Google Scholar 

  69. Y. Tanaka, A.S. Jursa, F.J. LeBlanc, Continuous emission spectra of rare gases in the vacuum ultraviolet region. II. Neon and helium, J. Opt. Soc. Am. 48, 304–308 (1958)

    Google Scholar 

  70. M.V. McCusker, The rare gas excimers, Chapter 3, in Excimer Lasers, 2nd edn., ed. by Ch. Rhodes. Topics in Applied Physics, vol. 30 (Springer, Berlin, Heidelberg, New York, Tokyo, 1984)

    Google Scholar 

  71. J. Wieser, M. Salvermoser, L.H. Shaw, A. Ulrich, D.E. Murnick, H. Dahi, Lyman-alpha emission via resonant energy transfer, J. Phys. B 31, 4589–4597 (1998)

    Article  Google Scholar 

  72. P. Kurunczi, H. Shah, K. Becker, Hydrogen Lyman-α and Lyman-β emissions from high-pressure microhollow cathode discharges in Ne-H2 mixtures, J. Phys. B 32, L651–L658 (1999)

    Article  Google Scholar 

  73. A. El-Dakrouri, J. Yan, M.C. Gupta, M. Laroussi, Y. Badr, VUV emission from a novel DBD-based radiation source, J. Phys. D 35, L109–L114 (2002)

    Article  Google Scholar 

  74. T. Efthimiopoulos, D. Zouridis, A. Ulrich, Excimer emission spectra of rare gas mixtures using either a supersonic expansion or a heavy-ion-beam excitation, J. Phys. D 30, 1746–1754 (1997)

    Article  Google Scholar 

  75. A. Morozov, B. Krylov, G. Gerasimov, A. Arnesen, R. Hallin, A study of atomic and molecular energy transfer channels in Kr-Xe gas mixtures excited with radio frequency discharges, J. Phys. B 35, 1929–1940 (2002)

    Article  Google Scholar 

  76. A. Schmitt, K. Wendt, A. Ulrich, Electron beam pumped UV light source for resonant spectroscopy of atoms, Maier-Leibnitz-Laboratorium für Kern- und Teilchenphysik, LMU and TU Munich, Annual Report 2002, p. 62

    Google Scholar 

  77. B. Eliasson, U. Kogelschatz, UV excimer radiation from dielectric-barrier discharges, Appl. Phys. B 46, 299–303 (1988)

    Article  Google Scholar 

  78. A.N. Panchenko, E.A. Sosnin, V.F. Tarasenko, Improvement of output parameters of glow discharge UV excilamps, Opt. Commun. 161, 249–252 (1999)

    Article  Google Scholar 

  79. A. El-Habachi, K.H. Schoenbach, Emission of excimer radiation from direct current, high-pressure hollow cathode discharges, Appl. Phys. Lett. 72, 22–24 (1998)

    Article  Google Scholar 

  80. M. Salvermoser, D.E. Murnick, High-efficiency, high-power, stable 172 nm xenon excimer light source, Appl. Phys. Lett. 83, 1932–1934 (2003)

    Article  Google Scholar 

  81. J. Wieser, D.E. Murnick, A. Ulrich, H.A. Huggins, A. Liddle, W.L. Brown, Vacuum ultraviolet rare gas excimer light source, Rev. Sci. Instrum. 68, 1360–1364 (1997)

    Article  Google Scholar 

  82. M.I. Lomaev, A.N. Panchenko, V.S. Skakun, E.A. Sosnin, V.F. Tarasenko, M.G. Adamson, B.R. Myers, F.T. Wang, Excilamp producing up to 130 W of output power and possibility of its application, Laser Part. Beams 15, 339–345 (1997)

    Article  Google Scholar 

  83. U. Kogelschatz, J. Salge, High-pressure plasmas: dielectric-barrier and corona discharges – properties and technical applications, in Low Temperature Plasma Physics, ed. by R. Hippler, S. Pfau, M. Schmidt, K.H. Schoenbach (Wiley-VCH, Berlin, Weinheim, New York, Chichester, Brisbane, Singapore, Toronto, 2001)

    Google Scholar 

  84. G. Zissis (ed.), Light sources, 2004, in Proceedings of the 10th International Symposium on the Science and Technology of Light Sources, Toulouse, France, 18–22 July 2004, IOP Conference Series Number 182 (Institute of Physics Publishing, Bristol, Philadelphia, 2004)

    Google Scholar 

  85. J. Meichsner, D. Loffhagen, H.-E. Wagner (eds.), in XXVI International Conference on Phenomena in Ionized Gases (ICPIG) 2003, Greifwald, Germany, July 15–20, 2003 (4 volumes), ISBN 3-00-011689-3

    Google Scholar 

  86. V.F. Tarasenko, G.V. Mayer, G.G. Petrash (eds.), in Int. Conf. On Atomic and Molecular Pulsed Lasers, vol. V, Tomsk, Russia, Sept. 15–19, 2003; Proc. SPIE, vol. 5483, SPIE Press, Bellingham, and earlier proceedings of this conference series

    Google Scholar 

  87. K.H. Schoenbach, R. Verhappen, T. Tessnow, F.E. Peterkin, W.W. Byszewski, Appl. Phys. Lett. 68, 13–15 (1996)

    Article  Google Scholar 

  88. M. Salvermoser, D.E. Murnick, Efficient, stable, corona discharge 172 nm xenon excimer light source, J. Appl. Phys. 94, 3722 (2003)

    Article  Google Scholar 

  89. M. Salvermoser, D.E. Murnick, Stable high brightness radio frequency driven micro-discharge lamps at 193 (ArF*) and 157 nm (F *2 ), J. Phys. D 37, 180–184 (2004)

    Article  Google Scholar 

  90. C.A. Brau, Rare gas halogen excimers, Chapter 4 (4.3), in Excimer Lasers, 2nd edn., ed. by Ch.K. Rhodes. Topics in Applied Physics, vol. 30 (Springer, Berlin, Heidelberg, New York, Tokyo, 1984)

    Google Scholar 

  91. P. Lenard, Ueber Kathodenstrahlen in Gasen von atmosphärischem Druck und im äussersten Vacuum, Annal. Phys. Neue Folge Band 51, 225–267 (1994)

    Google Scholar 

  92. R. Gauvin, P. Hovongton, D. Drouin, P. Horny, H. Demers, CASINO program (public domain) Université de Sherbrooke, Québec, Canada. http://www.gel.usherb.ca/casino/

  93. M. Salvermoser, D.E. Murnick, J. Wieser, A. Ulrich, Energy flow and excimer yields in continuous wave rare gas-halogen systems, J. Appl. Phys. 88, 453–459 (2000)

    Article  Google Scholar 

  94. F. Mühlberger, J. Wieser, A. Ulrich, R. Zimmermann, Single photon ionization (SPI) via incoherent VUV-excimer light: robust and compact time-of-flight mass spectrometer for on-line, real-time process gas analysis, Anal. Chem. 74, 3790–3801 (2002)

    Article  Google Scholar 

  95. A. Fedenev, A. Morozov, R. Krücken, S. Schoop, J. Wieser, A. Ulrich, Applications of a broadband electron-beam pumped XUV radiation source, J. Phys. D 37, 1586–1591 (2004)

    Article  Google Scholar 

  96. G. Schmahl, D. Rudolf (eds.), X-ray Optics and Spectroscopy (Plenum, New York, 1987)

    Google Scholar 

  97. H.H. Busta, J.M. Chen, Z. Shen, K. Jansen, S. Rizkowski, J. Matey, A. Lanzillotto, Characterization of electron emitters for miniature X-ray sources, J. Vac. Sci. Technol. B 21(1), 344 (2003)

    Article  Google Scholar 

  98. H.H. Busta, in Vacuum Microelectronics, Chap. 7, ed. by W. Zhu (Wiley, New York, 2001), p. 315

    Google Scholar 

  99. O.G. Semyonov’, A.E. Gurey, A.P. Kanavin, A.A. Tikhomirov, Applications of micropinch x-ray source, J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 19(4), 1235–1240 (2001)

    Article  Google Scholar 

  100. Xoft microTube, Inc., homepage

    Google Scholar 

  101. R. Nath, L.L. Anderson, G. Luxton, et al., Dosimetry of interstitial brachytherapy sources: Recommendations of the AAPM Radiation Therapy Committee Task Group 43, Med. Phys. 22, 209–234 (1995)

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ulrich, A., Born, M., Koops, H.W.P., Bluhm, H., Jüstel, T. (2008). Infrared, Light, Ultraviolet, Laser- and X-ray-Tubes. In: Eichmeier, J.A., Thumm, M.K. (eds) Vacuum Electronics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71929-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71929-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71928-1

  • Online ISBN: 978-3-540-71929-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics