Skip to main content

Vacuum Electron Sources and their Materials and Technologies

  • Chapter
Vacuum Electronics

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.R. Paturi, Chronik der Technik (Chronik-Verlag in der Harenberg Kommunikation, Dortmund, 1989)

    Google Scholar 

  2. G. Herrmann, S. Wagener, The Oxide Coated Cathode (Chapman & Hall, London, 1951)

    Google Scholar 

  3. G. Haas, R. Thomas, Thermionic sources for high brightness electron beams, IEEE Trans. Electron Devices 37(3), 850–861 (1990)

    Article  Google Scholar 

  4. A. Wehnelt, Über den Austritt negativer Ionen aus glühenden Metallen, Annal. Phys. Ser. 4 14, 425–468 (1904)

    Article  Google Scholar 

  5. L.S. Nergaard, Electron and ion motion in oxide cathodes, in Halbleiter-probleme, Bd. 3 (F. Vieweg-Verlag, Braunschweig, 1956), pp. 154–206

    Google Scholar 

  6. A.L. Reimann, Thermionic Emission (Chapman & Hall, London, 1934)

    Google Scholar 

  7. G. Gaertner, P. Geittner, H. Lydtin, A. Ritz, Emission properties of top-layer Scandate cathodes prepared by LAD, Appl. Surf. Sci. 111, 11–17 (1997)

    Article  Google Scholar 

  8. G. Miram, A. Cattelino, Life test facility for thermionic cathodes, in TRI Service/NASA Cathode Workshop, Cleveland, Conf. Record, 1994, pp. 233–236

    Google Scholar 

  9. J. Eichmeier, Moderne Vakuumelektronik (Springer, Berlin, 1981)

    Google Scholar 

  10. W. Nottingham, Thermionic emission, in Handbuch der Physik, ed. by S. Flügge. Elektronen-Emission/Gasentladungen I, vol. 21 (Springer, Berlin, 1956), pp. 1–175

    Google Scholar 

  11. G. Haas, R. Thomas, Thermionic emission and work function, in Techniques of Metal Research, Vol. 6/1, ed. by E. Passaglia. (Interscience Publ., 1972), pp. 94–262

    Google Scholar 

  12. A.G. Knapp, Surface potentials and their measurement by the diode method, Surf. Sci. 34, 289–316 (1973)

    Article  Google Scholar 

  13. J. Hasker, Calculation of diode characteristics and proposed characterization of cathode emission capability, Appl. Surf. Sci 16, 220–237 (1983)

    Article  Google Scholar 

  14. C. Herring, M. Nichols, Thermionic emission, Rev. Mod. Phys. 21(2), 196 (1949)

    Article  Google Scholar 

  15. J. Eichmeier, H. Heynisch (ed.), Handbuch der Vakuumelektronik (R. Oldenbourg, München, Wien, 1989)

    Google Scholar 

  16. R.O. Jenkins, A review of thermionic cathodes, Vacuum 19(8), 353 (1969)

    Article  Google Scholar 

  17. I. Langmuir, The electron emission from thoriated tungsten filaments, Phys. Rev. 22, 357–398 (1923)

    Article  Google Scholar 

  18. I. Weissman, J. Appl. Phys. 36(2), 406 (1965)

    Article  Google Scholar 

  19. G. Gaertner, D. van Houwelingen, Electron emission cooling of thermionic thoriated tungsten cathodes under high dc-loads, Elektronenröhren u. Vakuumelektronik, NTG-Fachbericht 95, VDE-Verlag (1986), pp. 224–229

    Google Scholar 

  20. G. Gaertner, NTG Fachberichte 85, 228–232 (1983)

    Google Scholar 

  21. G. Gaertner, P. Janiel, H. Lydtin, ITG Fachbericht 108, 297–302 (1989)

    Google Scholar 

  22. G. Gessinger, C. Buxbaum, High Temp.-High Press. 10, 325–328 (1978)

    Google Scholar 

  23. G. Gaertner, P. van der Heide, New Developments in CRT Cathodes, IDW 2000, Technical Digest CRT4-1, pp. 513–517

    Google Scholar 

  24. G. Gaertner, D. Barratt, Appl. Surf. Sci. 251, 73–79 (2005)

    Article  Google Scholar 

  25. B. Vancil, E. Wintucky, Appl. Surf. Sci. 251, 101–105 (2005)

    Article  Google Scholar 

  26. Y. Wang, et al., Appl. Surf. Sci. 251, 80–88 (2005)

    Article  Google Scholar 

  27. R. Cortenraad, A. van der Gon, H. Brongersma, G. Gaertner, A. Manenschijn, Appl. Surf. Sci. 146, 69–74 (1999)

    Article  Google Scholar 

  28. S. Kimura, T. Higuchi, et al., Appl. Surf. Sci. 111, 60–63 (1997)

    Article  Google Scholar 

  29. A. van Oostrom, L. Augustus, Appl. Surf. Sci. 2(2), 173–186 (1979)

    Article  Google Scholar 

  30. S. Taguchi, T. Aida, S. Yamamoto, IEEE Trans. Electron. Devices 31(7), 900–903 (1984)

    Article  Google Scholar 

  31. J. Hasker, J. van Esdonk, J.E. Crombeen, Appl. Surf. Sci. 26, 173–195 (1986)

    Article  Google Scholar 

  32. J. Hasker, J.E. Crombeen, Trans. Electron. Devices 37(12), 2589–2594 (1990)

    Article  Google Scholar 

  33. S. Yamamoto, I. Watanabe, S. Taguchi, S. Sasaki, T. Yaguchi, Jap. J. Appl. Phys. 28, 490–494 (1989)

    Article  Google Scholar 

  34. U. van Slooten, P. Duine, Appl. Surf. Sci. 111, 24–29 (1997)

    Article  Google Scholar 

  35. G. Gaertner, P. Janiel, J.E. Crombeen, J. Hasker, Vacuum microelectronics 1989, in IOP Conf. Ser. 99, 25–28 (1989)

    Google Scholar 

  36. G. Gaertner, P. Geittner, D. Raasch, A. Ritz, D. Wiechert, Appl. Surf. Sci. 146, 12–16, 22–30 (1999)

    Article  Google Scholar 

  37. G. Gaertner, P. Geittner, D. Raasch, Low temperature and cold emission of Scandate cathodes, Appl. Surf. Sci. 201, 61–68 (2002)

    Article  Google Scholar 

  38. M. Saito, et al., Higher current density oxide cathode for CRT, NTG Fachberichte 95, 165–170 (1986)

    Google Scholar 

  39. G. Gaertner, D. Raasch, D. Barratt, S. Jenkins, Accelerated life tests of CRT oxide cathodes, Appl. Surf. Sci. 215, 72–77 (2003)

    Article  Google Scholar 

  40. G. Gaertner, P. Janiel, D. Raasch, Direct determination of electrical conductivity of oxide cathodes, Appl. Surf. Sci. 201, 35–40 (2002)

    Article  Google Scholar 

  41. S. Hodgson, C. Goodhand, P. van der Heide, et al., Processing and performance of a novel cathode material, Appl. Surf. Sci. 146, 79–83 (1999)

    Article  Google Scholar 

  42. T. Higuchi, Recent trends in thermionic cathodes, in IDW’98, CRT3-1, p. 393

    Google Scholar 

  43. Y.C. Kim, K. Joo, J. Choi, H. Yang, in IVESC 2000 Techn. Digest D-4

    Google Scholar 

  44. www.kimballphysics.com

  45. J.M. Lafferty, Boride cathodes, J. Appl. Phys. 22(3), 299–309 (1951)

    Article  Google Scholar 

  46. H. Ahmed, A. Broers, J. Appl. Phys. 43, 2185–2192 (1972)

    Article  Google Scholar 

  47. S. Dushman, Thermionic emission, Rev. Mod. Phys. 2, 405–414 (1930)

    Article  Google Scholar 

  48. V. Fomenko, Emission properties of materials, NTIS, JPRS-56579 (1972)

    Google Scholar 

  49. A. Makarov, et al., Cesium coated graphite emitter, Sov. Phys.-Tech. Phys. 22(12), 1463–1465 (1978)

    Google Scholar 

  50. P.A. Duine, in IVMC, Darmstadt, 1999, pp. 368–369

    Google Scholar 

  51. P. Coates, Thermionic emission from photocathodes, J. Phys. D: Appl. Phys. 5, 1489–1498 (1972)

    Article  Google Scholar 

  52. R.H. Good Jr., E.W. Müller, Flügge, Elektronen-Emission, in Handbuch der Physik, Bd. XXI (Springer, Berlin, 1956), S. 176–231

    Google Scholar 

  53. R.H. Fowler, L. Nordheim, Proc. R. Soc. London Ser. A 119, 173 (1928)

    Article  Google Scholar 

  54. E.W. Müller, Ergeb. Exakt. Naturwiss 27, 290 (1953)

    Article  Google Scholar 

  55. K.R. Shoulders, Microelectronics using electron-beam-activated machining techniques, Adv. Comp. 2, 135 (1961)

    Google Scholar 

  56. J.W. Gewartowski, H.A. Watson, Principles of Electron Tubes (D. Van Norstrand, Princeton, 1965), p. 229

    Google Scholar 

  57. W.P. Dyke, W.W. Dolan, Advances in Electronics and Electron Physics, vol. 8 (Academic, New York, 1956), p. 89

    Google Scholar 

  58. C.J. Spindt, Appl. Phys. 39, 3504 (1968)

    Article  Google Scholar 

  59. C. Spindt, I. Brodie, L. Humphrey, E.R. Westerberg, J. Appl. Phys. 47, 5248 (1976)

    Article  Google Scholar 

  60. R. Meyer, A. Ghis, P. Ramband, F. Muller, Development of matrix array of cathode emitters on a glass substrate for flat display applications, in Proc. 1st IVMC, Williamsburg, VA, 1988, p. 10

    Google Scholar 

  61. I. Brodie, C.A. Spindt, Appl. Surf. Sci. 2, 149 (1979)

    Article  Google Scholar 

  62. I. Brodie, C.A. Spindt, Vacuum microelectronics, in Advances in Electronics and Electron Physics, ed. by P.W. Hawkes, vol. 83 (Academic, New York, 1992), p. 1

    Google Scholar 

  63. D.W. Tuggle, L.W. Swanson, Emission Characteristics of the Zr-O-W thermal field electron source, J. Vac. Sci. Technol. B 3, 220 (1985)

    Article  Google Scholar 

  64. L.W. Swanson, A comparative study of the zirconiated and build-up W cathode, J. Vac. Sci. Technol. 12(6), 1228 (1975)

    Article  Google Scholar 

  65. H.G. König, H. Koops, A Study of Zr-O-W- and W-field emitters in an electron source at high vacuum conditions, in Proc. Int. Conf. Microcircuit Engineering, Berlin, 1984, ed. by A. Heuberger, H. Beneking (Academic, New York, 1985), pp. 195–202

    Google Scholar 

  66. T. Asano, T. Tamon, Tech. Dig. IVMC91, 1991, p. 88

    Google Scholar 

  67. M. Komuro, H. Hiroshima, J. Vac. Sci. Technol. B 9, 2656 (1991)

    Article  Google Scholar 

  68. P.R. Schwoebel, C.A. Spindt, Appl. Phys. Lett. 63, 33 (1993)

    Article  Google Scholar 

  69. P.R. Wilshaw, E.C. Boswell, J. Vac. Sci. Technol. B 12, 662 (1994); M. Takai, M. Yamashita, H. Wille, S. Yura, S. Horibata, M. Ototake, Appl. Phys. Lett. 66, 422 (1995)

    Article  Google Scholar 

  70. M. Takai, M. Yamashita, H. Wille, S. Yura, S. Horibata, M. Ototake, J. Vac. Sci. Technol. B 13, 441 (1995)

    Article  Google Scholar 

  71. S. Matsui, K. Mori, J. Vac. Sci. Technol. B 4, 299 (1986)

    Article  Google Scholar 

  72. H.W.P. Koops, J. Kretz, M. Rudolph, M. Weber, G. Dahm, K.L. Lee, Jpn. J. Appl. Phys. 33, 1345 (1994)

    Article  Google Scholar 

  73. J. Kretz, M. Rudolph, M. Weber, H.W.P. Koops, Three dimensional structurization by additive lithography, analysis of deposits using TEM and EDX, and application for field emitter tips, Microelectron. Eng. 23, 477–481 (1994)

    Article  Google Scholar 

  74. M. Takai, T. Kishimoto, M. Yamashita, H. Morimoto, S. Yura, A. Hosono, S. Okuda, S. Lipp, L. Frey, H. Ryssel, J. Vac. Sci. Technol. 14, 1973 (1996)

    Google Scholar 

  75. T. Hirano, S. Kanemaru, H. Tanoue, J. Itoh, Jap. J. Appl. Phys. 35, 6637 (1996)

    Article  Google Scholar 

  76. K. Okano, et al., Appl. Surf. Sci. 146, 274–279 (1999)

    Article  Google Scholar 

  77. J.F. Xu, et al., Appl. Surf. Sci. 146, 280–286 (1999)

    Article  Google Scholar 

  78. W.B. Choi, D.S. Chung, J.H. Kang, H.Y. Kim, Y.W. Jin, I.T. Han, Y.H. Lee, J.E. Jung, N.S. Lee, G.S. Park, J.M. Kim, Appl. Phys. Lett. 75, 3129 (1999)

    Article  Google Scholar 

  79. S.K. Kang, J.H. Choi, J.H. Park, J.-H. Han, J.-B. Yoo, J.-W. Nam, C.K. Lee, J.M. Kim, Relationship between field emission property and composition of carbon nanotube paste for large area cold cathode, J. Vac. Sci. Technol. B 22(3), 1345 (2004)

    Article  Google Scholar 

  80. K.A. Dean, B.F. Coll, Y.W. Xie, A.A. Talin, A. Howard, C.D. Moyer, J. Trujillo, J. Jaskie, Motorola Inc. Physical Science Labs, Tempe, AZ

    Google Scholar 

  81. A.G. Chakhovskoi, C.E. Hunt, G. Forsberg, T. Nilsson, P. Persson, Reticulated vitreous carbon field emission cathodes for light source applications, J. Vac. Sci. Technol. B 21, 571 (2003)

    Article  Google Scholar 

  82. H. Busta, Field emission flat panel displays, Chapter 7, in Vacuum Microelectronics, ed. by W. Zhu (Wiley, New York, 2001)

    Google Scholar 

  83. E.A. Hijzen, The avalanche cold cathode for CRTs, in IDW’98, 1998, pp. 405–408

    Google Scholar 

  84. A.M.E. Hoebrechts, G.G.P. van Gorkum, Design, technology, and behavior of a silicon avalanche cathode, J. Vac. Sci. Technol. B 4, 105 (1986)

    Article  Google Scholar 

  85. S.H. Jo, J.D. Lee, Fabrication and analysis of a silicon tip avalanche cathode, J. Vac. Sci. Technol. B 13(2), 469 (1995)

    Article  MathSciNet  Google Scholar 

  86. W. Fuhs, P. Kanschat, K. Lips, Bandtails and defects in microcrystalline silicon (mu c-Si:H), J. Vac. Sci. Technol. B 18, 1792 (2000)

    Article  Google Scholar 

  87. J.-S. Kim, T. Hoshi, K. Sawada, M. Ishida, Planar metal–insulator–semiconductor type field emitter fabricated on an epitaxial Al/Al2O3/Si (111) structure, J. Vac. Sci. Technol. B 22, 1358–1361 (2004)

    Article  Google Scholar 

  88. H.A. Baba, T. Yoshida, T. Asano, Field emission characteristics of defect-controlled polyimide tunnelling cathode, J. Vac. Sci. Technol. B 22, 1353–1357 (2004)

    Article  Google Scholar 

  89. Riege, Ferroelectric electron emission: Principles and technology, Appl. Surf. Sci. 111, 318–324 (1997)

    Article  Google Scholar 

  90. J.D. Clewley, A.D. Crowell, D.W. Juenker, Changes in photoelectron emission from molybdenum due to exposure to gases, J. Vac. Sci. Technol. 9, 877 (1972)

    Article  Google Scholar 

  91. T.E. Fischer, Photoemission and surfaces, J. Vac. Sci. Technol. 9, 860 (1972)

    Article  Google Scholar 

  92. http://www.saesgetters.com

  93. D. Martin, et al., Design of glass substrates and spacers for FEDs, Saint-Gobain Display Glass, France, Technical digest EURO FE, 2002

    Google Scholar 

  94. http://www.mems-exchange.org/catalog/

  95. J. Dziuban, R. Walczak, Microwave enhanced wet anisotropic etching of silicon utilizing a memory effect of KOH activation – a remote E2MSi process, in The 16th European Conference on Solid-State Transducers Eurosensors XVI, Prague, Czech Republic, T1A3, September 15–18, 2002

    Google Scholar 

  96. J. Eichmeier, Moderne Vakuumelektronik (Springer, Berlin, 1981), chapter 9.4

    Google Scholar 

  97. J. Eichmeier, H. Heynisch (ed.), Handbuch der Vakuum-elektronik (R. Oldenbourg, München, Wien, 1989), chapter 2

    Google Scholar 

  98. W. Kohl, Handbook of Materials and Techniques for Vacuum Devices (Reinhold Publishing corporation, 1967)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gaertner, G., Koops, H.W.P. (2008). Vacuum Electron Sources and their Materials and Technologies. In: Eichmeier, J.A., Thumm, M.K. (eds) Vacuum Electronics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71929-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71929-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71928-1

  • Online ISBN: 978-3-540-71929-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics