Skip to main content

Mechanisms Governing the Growth of Organic Oligophenylene “Needles” on Au Substrates

  • Chapter
Organic Nanostructures for Next Generation Devices

Part of the book series: Materials Science ((SSMATERIALS,volume 101))

Today, 50 years after the first introduction of the transistor inorganic semiconductors, most importantly Si and GaAs are still the materials of choice for producing high performance, fast semiconductor devices. In the past decade, however, organic materials are attracting an increasing amount of interests with regard to use them as active compounds in semiconductor devices. These applications generally do not aim at high-end applications such as very fast switches, instead the current interest aims at developing to establish low cost or plastic electronics. The most important application presently are radio frequency identification devices (RFID), which will be used to identify not only individual objects like luggage on an airport but will also be used to identify products, e.g., to the cashier in the supermarket. Soft, organic materials made of either polymers or large molecules are under intense investigation by an increasing number of groups in many countries. Since organic materials have already made their way to electronic applications, for example, in connection with organic light-emitting diodes, it is rather likely that the first commercial products employing organic materials as active component in an electronic device, like an organic field effect transistor (OFET) will be introduced fairly soon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Witte, C. Wöll, J. Mater. Res. 19, 1889 (2004)

    Article  ADS  CAS  Google Scholar 

  2. F. Balzer, H.G. Rubahn, PhiuZ 36(1) (2005)

    Google Scholar 

  3. F. Balzer, H.G. Rubahn, Adv. Funct. Mater. 15, 17 (2005)

    Article  CAS  Google Scholar 

  4. F. Balzer, J. Beermann, S. Bozhevolnyi, A. Simonsen, H.G. Rubahn, Nano Lett. 3, 1311 (2003)

    Article  ADS  CAS  Google Scholar 

  5. F. Balzer, H.G. Rubahn, Surf. Sci. 548, 170 (2004)

    Article  ADS  CAS  Google Scholar 

  6. F. Quochi, F. Cordella, R. Orru, J. Communal, P. Verzeroli, A. Mura, G. Bongiovanni, A. Andreev, H. Sitter, N. Sariciftci, Appl. Phys. Lett. 84, 4454 (2004)

    Article  ADS  CAS  Google Scholar 

  7. S. Müllegger, I. Salzmann, R. Resel, G. Hlawacek, C. Teichert, A. Winkler, J. Chem. Phys. 121, 2272 (2004)

    Article  PubMed  ADS  CAS  Google Scholar 

  8. G. Hlawacek, C. Teichert, S. Müllegger, R. Resel, A. Winkler, Synthetic Met. 146, 383 (2004)

    Article  CAS  Google Scholar 

  9. S. Müllegger, S. Mitsche, P. Pölt, K. Hänel, A. Birkner, C. Wöll, A. Winkler, Thin Solid Films 484, 408 (2005)

    Article  ADS  CAS  Google Scholar 

  10. S. Müllegger, O. Stranik, E. Zojer, A. Winkler, Appl. Surf. Sci. 221, 184 (2004)

    Article  ADS  CAS  Google Scholar 

  11. T. Sato, S. Kitamura, M. Iwatsuki, J. Vac. Sci. Technol. A 18, 960 (2000)

    Article  ADS  CAS  Google Scholar 

  12. S. Reiß, H. Krumm, A. Niklewski, V. Staemmler, C. Wöll, J. Chem. Phys. 116, 7704 (2002)

    Article  ADS  CAS  Google Scholar 

  13. H. Yanagi, T. Morikawa, Appl. Phys. Lett. 75, 187 (1999)

    Article  ADS  CAS  Google Scholar 

  14. N. Koch, G. Heimel, J. Wu, E. Zojer, R. Johnson, J.L. Brédas, K. Müllen, J. Rabe, Chem. Phys. Lett. 413, 390 (2005)

    Article  ADS  CAS  Google Scholar 

  15. P. Puschnig, C. Ambrosch-Draxl, Phys. Rev. B 60, 7891 (1999)

    Article  ADS  CAS  Google Scholar 

  16. K. Baker, A. Fratini, T. Resch, H. Knachel, W. Adams, E. Socci, B. Farmer, Polymer 34, 1571 (1993)

    Article  CAS  Google Scholar 

  17. Y. Delugeard, J. Desuche, J. Baudour, Acta Cryst. B 32, 702 (1976)

    Article  Google Scholar 

  18. G. 03, (Gaussian, Inc., Pittsburgh PA, 2003)

    Google Scholar 

  19. J. Stöhr, NEXAFS Spectroscopy, Springer Series in Surface Science, vol. 25 (Springer, Berlin Heidelberg New York, 1992)

    Google Scholar 

  20. S. Müllegger et al., To be published

    Google Scholar 

  21. K. Weiss, S. Gebert, M. Wühn, H. Wadepohl, C. Wöll, J. Vac. Sci. Technol. 16, 1017 (1998)

    Article  ADS  CAS  Google Scholar 

  22. G. Beernink, T. Strunskus, G. Witte, C. Wöll, Appl. Phys. Lett. 85, 398 (2004)

    Article  ADS  CAS  Google Scholar 

  23. S. Müllegger, A. Winkler, Surf. Sci. 600, 1290 (2006)

    Article  ADS  CAS  Google Scholar 

  24. K.F. Braun, S.W. Hla, Nano Lett. 5, 73 (2005)

    Article  PubMed  ADS  CAS  Google Scholar 

  25. D. Käfer, L. Ruppel, G. Witte, C. Wöll, Phys. Rev. Lett. 95, 166602 (2005)

    Article  PubMed  ADS  CAS  Google Scholar 

  26. A. Hauschild, K. Karki, B. Cowie, M. Rohlfing, F. Tautz, M. Sokolowski, Phys. Rev. Lett. 95, 209602 (2005)

    Article  ADS  CAS  Google Scholar 

  27. R. Rurali, N. Lorente, P. Ordejon, Phys. Rev. Lett. 95, 209601 (2005)

    Article  PubMed  ADS  CAS  Google Scholar 

  28. P. Bagus, K. Hermann, C. Wöll, J. Chem. Phys. 123, 184109 (2005)

    Article  PubMed  ADS  CAS  Google Scholar 

  29. P. Bagus, V. Staemmler, C. Wöll, Phys. Rev. Lett. 89, 096104 (2002)

    Article  PubMed  ADS  CAS  Google Scholar 

  30. S. Müllegger, I. Salzmann, R. Resel, A. Winkler, Appl. Phys. Lett. 83, 4536 (2003)

    Article  ADS  CAS  Google Scholar 

  31. C.C.D.C. Mercury Software, (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hänel, K., Wóll, C. (2008). Mechanisms Governing the Growth of Organic Oligophenylene “Needles” on Au Substrates. In: Al-Shamery, K., Rubahn, HG., Sitter, H. (eds) Organic Nanostructures for Next Generation Devices. Materials Science, vol 101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71923-6_8

Download citation

Publish with us

Policies and ethics