Skip to main content

Tailored Organic Nanoaggregates Generated by Self-Assembly of Designed Functionalised p-Quaterphenylenes on Muscovite Mica Substrates

  • Chapter
Organic Nanostructures for Next Generation Devices

Part of the book series: Materials Science ((SSMATERIALS,volume 101))

Materials built up of π-conjugated molecular building blocks have seen a tremendous development recently due to their interesting optical, electrical and optoelectrical properties [1]. Studies of single molecule properties on the Ångstrom length scale have demonstrated the feasibility of molecular electronics [2] as bulk polymeric systems have proven the practicability of plastic electronics on the micrometer scale, which resulted in the first commercially available polymer-based light-emitting diodes already [3]. However, it is still a challenge to develop structures that are confined to the (sub)-wavelength nanometer regime in at least one or two dimensions [4]. Promising bottomup approaches have been developed using inorganic nanowires [5] or carbon nanotubes [6], however, the use of supramolecular self-assembly processes [7] of π-conjugated organic molecules is an attractive alternative to get access to defined shape-persistent objects under thermodynamic control. Although inorganic materials are usually chemically more stable, the use of organic rather than inorganic compounds to fabricate nanostructures usually has the advantage of higher luminescence efficiency at the same material density, more flexible spectroscopic properties, and in general easier and cheaper processing. Especially rod-like molecules [8] like oligothiophenes [1]b, [9], perylenes [10], pentacenes [11] and oligo-p-phenylenes [12, 13] have been studied in this context [14]. Among those the latter ones and especially the p-hexaphenylene has been found to form very interesting nanoaggregates upon vapour deposition on various solid supports using different deposition techniques [15–24].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Some recent books: (a) K. Müllen, G. Wegner, Electronic Materials: The Oligomer Approach (Wiley-VCH, Weinheim, 1998). (b) D. Fichou, Handbook of Oligo- and Polythiophenes (Wiley-VCH, Weinheim, 1999). (c) H.S. Nalva, Handbook of Advanced Electronic and Photonic Materials and Devices (Academic, San Diego, 2000). (d) K. Müllen, U. Scherf, Organic Light Emitting Devices – Synthesis, Properties and Applications (Wiley-VCH, Weinheim, 2006). (e) H. Klauk, Organic Electronics – An Industrial Perspective (Wiley-VCH, Weinheim, 2006)

    Book  Google Scholar 

  2. R.L. Carroll, C.B. Gorman, Angew. Chem. 114, 4556 (2002); Angew. Chem. Int. Ed. 41, 4378 (2002)

    Article  Google Scholar 

  3. (a) A. Kraft, A.C. Grimsdale, A.B. Holmes, Angew. Chem. 110, 416 (1998); Angew. Chem. Int. Ed. 37, 402 (1998). (b) S.R. Forrest, Nature 428, 911 (2004)

    Article  Google Scholar 

  4. Special issues on nanowires: (a) Adv. Mater. 15(5), 341 (2003). (b) L. de Cola (ed.), Top. Curr. Chem. 257 (2005). A recent review: (c) S.J. Hurst, E.K. Payne, L. Qin, C.A. Mirkin, Angew. Chem. 118, 2738 (2006); Angew. Chem. Int. Ed. 45, 2672 (2006)

    Google Scholar 

  5. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15, 353 (2003)

    Article  CAS  Google Scholar 

  6. A special issue on carbon nanotubes: Acc. Chem. Res. 36(12), 997 (2002)

    Google Scholar 

  7. A.P.H.J. Schenning, E.W. Meijer, Chem. Commun. 3245 (2005)

    Google Scholar 

  8. (a) P.F.H. Schwab, M.D. Levin, J. Michl, Chem. Rev. 99, 1863 (1999). (b) P.F.H. Schwab, J.R. Smith, J. Michl, Chem. Rev. 105, 1197 (2005)

    Article  CAS  Google Scholar 

  9. G. Ziegler, in Handbook of Organic Conductive Molecules and Polymers, vol. 3, ed. H.S. Nalwa (Wiley, New York, 1997), Chap. 13

    Google Scholar 

  10. (a) B. Krause, A.C. Dürr, K. Ritley, F. Schreiber, H. Dosch, D. Smilgies, Phys. Rev. B 66, 235404 (2002). (b) F. Würthner, Chem. Commun. 1564 (2004)

    Article  ADS  CAS  Google Scholar 

  11. M. Bendikov, F. Wudl, D.F. Perepichka, Chem. Rev. 104, 4891 (2004)

    Article  PubMed  CAS  Google Scholar 

  12. D.K. James, J.M. Tour, Top. Curr. Chem. 257, 33 (2005)

    CAS  Google Scholar 

  13. (a) R. Resel, Thin Solid Films 433, 1 (2003). (b) F. Balzer, H.-G. Rubahn, Adv. Funct. Mater. 14, 17 (2005). (c) F. Balzer, H.-G. Rubahn, PhiuZ 36, 36 (2005)

    Article  ADS  CAS  Google Scholar 

  14. (a) G. Witte, C. Wöll, J. Mater. Res. 19, 1889 (2004). (b) D. Hertel, C.D. Müller, K. Meerholz, ChiuZ 39, 336 (2005)

    Article  ADS  CAS  Google Scholar 

  15. Some examples for depositions on alkali metal halides: (a) T. Mikami, H. Yanagi, Appl. Phys. Lett. 73, 563 (1998). (b) E.J. Kintzel Jr., D.-M. Smilgies, J.G. Skofronick, S.A. Safron, D.H. Winkle, T.W. Trelenberg, E.A. Akhadov, F.A. Flaherty, J. Vac. Sci. Technol. A 19, 1270 (2001). (c) D.-M. Smilgies, N. Boudet, H. Yanagi, Appl. Surf. Sci. 189, 24 (2002). (d) E.J. Kintzel Jr., D.-M. Smilgies, J.G. Skofronick, S.A. Safron, D.H. Winkle, J. Vac. Sci. Technol. A 22, 107 (2004). (e) T. Haber, A. Andreev, A. Thierry, H. Sitter, M. Oehzelt, R. Resel, J. Cryst. Growth 284, 209 (2005). (f) E.J. Kintzel Jr., D. -M. Smilgies, J.G. Skofronick, S.A. Safron, D.H. Winkle, J. Cryst. Growth 289, 345 (2006)

    Article  ADS  CAS  Google Scholar 

  16. Some examples for depositions on gold (111): (a) C.B. France, B.A. Parkinson, Appl. Phys. Lett. 82, 1194 (2003). (b) S. Müllegger, I. Salzmann, R. Resel, A. Winkler, Appl. Phys. Lett. 83, 4536 (2003). (c) S. Müllegger, I. Salzmann, R. Resel, G. Hlawacek, C. Teichert, A. Winkler, J. Chem. Phys. 121, 2272 (2004). (d) R. Resel, M. Oehzelt, T. Haber, G. Hlawacek, C. Teichert, S. Müllegger, A. Winkler, J. Cryst. Growth 283, 397 (2005). (e) S. Müllegger, A. Winkler, Surf. Sci. 574, 322 (2005). (f) S. Müllegger, A. Winkler, Surf. Sci. 600, 1290 (2006). (g) S. Müllegger, A. Winkler, Surf. Sci. 600, 3982 (2006)

    Article  ADS  CAS  Google Scholar 

  17. Deposition on polycrystalline gold: S. Müllegger, O. Stranik, E. Zojer, A. Winkler, Appl. Surf. Sci. 221, 184 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Deposition on copper (100): Y. Hosoi, N. Koch, Y. Sakurai, H. Ishii, T.U. Kampen, G. Salvan, D.R.T. Zahn, G. Leising, Y. Ouchi, K. Seki, Surf. Sci. 589, 19 (2005)

    Article  ADS  CAS  Google Scholar 

  19. Deposition on GaAs(111): R. Resel, K. Erlacher, B. Müller, A. Thierry, B. Lotz, T. Kuhlmann, K. Lischka, G. Leising, Surf. Interface Anal. 30, 518 (2000)

    Article  CAS  Google Scholar 

  20. Deposition on pyrolytic graphite and SnS2: P.G. Schroeder, M.W. Nelson, B.A. Parkinson, R. Schlaf, Surf. Sci. 459, 349 (2000)

    Article  ADS  CAS  Google Scholar 

  21. Deposition on TiO2 (110): G. Koller, S. Berkebile, J.R. Krenn, G. Tzvetkov, G. Hlawacek, O. Lengyel, F.P. Netzer, C. Teichert, R. Resel, M.G. Ramsey, Adv. Mater. 16, 2159 (2004)

    Article  CAS  Google Scholar 

  22. Deposition on glass using a rubbing technique: K. Erlacher, R. Resel, J. Keckes, F. Meghdadi, G. Leising, J. Cryst. Growth 206, 135 (1999)

    Article  ADS  CAS  Google Scholar 

  23. Examples for hot-wall epitaxy deposition on mica: (a) A. Andreev, G. Matt, C.J. Brabec, H. Sitter, D. Badt, H. Seyringer, N.S. Sariciftci, Adv. Mater. 12, 629 (2000). (b) A. Andreev, H. Sitter, N.S. Sariciftci, C.J. Brabec, G. Springholz, P. Hinterdorfer, H. Plank, R. Resel, A. Thierry, B. Lotz, Thin Solid Films 403–404, 444 (2002). (c) H. Plank, R. Resel, A. Andreev, N.S. Sariciftci, H. Sitter, J. Cryst. Growth 237–238, 2076 (2002)

    Article  CAS  Google Scholar 

  24. Examples for molecular beam epitaxy deposition on mica: (a) F. Balzer, H.-G. Rubahn, Appl. Phys. Lett. 79, 2860 (2001). (b) F. Balzer, H.-G. Rubahn, Surf. Sci. 507–510, 588 (2002)

    Article  CAS  Google Scholar 

  25. F. Balzer, H.-G. Rubahn, Nano Lett. 2, 747 (2002)

    Article  ADS  CAS  Google Scholar 

  26. (a) A.Y. Andreev, C. Teichert, G. Hlawacek, H. Hoppe, R. Resel, D.-M. Smilgies, H. Sitter, N.S. Sariciftci, Org. Electron. 5, 23 (2004). (b) C. Teichert, G. Hlawacek, A.Y. Andreev, H. Siter, P. Frank, A. Winkler, N.S. Sariciftci, Appl. Phys. A 82, 665 (2006)

    Article  CAS  Google Scholar 

  27. (a) F. Balzer, J. Beermann, S.I. Bozhevolnyi, A.C. Simonsen, H.-G. Rubahn, Nano Lett. 3, 1311 (2003). (b) F. Balzer, L. Kankate, H. Niehus, R. Frese, C. Maibohm, H.-G. Rubahn, Nanotechnology 17, 984 (2006)

    Article  ADS  CAS  Google Scholar 

  28. H. Yanagi, T. Morikawa, Appl. Phys. Lett. 75, 187 (1999)

    Article  ADS  CAS  Google Scholar 

  29. (a) F. Balzer, V.G. Bordo, A.C. Simonsen, H-G. Rubahn, Appl. Phys. Lett. 82, 10 (2003). (b) F. Balzer, V.G. Bordo, A.C. Simonsen, H.-G. Rubahn, Phys. Rev. B 67, 115408 (2003)

    Article  ADS  CAS  Google Scholar 

  30. (a) F. Quochi, F. Cordella, R. Orrì, J.E. Communal, P. Verzeroli, A. Mura, G. Bongiovanni, A. Andreev, H. Sitter, N.S. Sariciftci, Appl. Phys. Lett. 84, 4454 (2004). (b) F. Quochi, F. Cordella, A. Mura, G. Bongiovanni, F. Balzer, H.-G. Rubahn, J. Phys. Chem. B 109, 21690 (2005). (c) F. Quochi, F. Cordella, A. Mura, G. Bongiovanni, F. Balzer, H.-G. Rubahn, Appl. Phys. Lett. 88, 041106/1 (2006)

    Article  ADS  CAS  Google Scholar 

  31. J. Kjelstrup-Hansen, H.H. Henrichsen, P. Bøggild, H.-G. Rubahn, Thin Solid Films 515, 827 (2006)

    Article  ADS  CAS  Google Scholar 

  32. H.H. Henrichsen, J. Kjelstrup-Hansen, D. Engstrøm, C.H. Clausen, P. Bøggild, H.-G. Rubahn, Org. Electron. (doi:10.1016/j.orgel.2007.03.010)

    Google Scholar 

  33. J. Kjelstrup-Hansen, P. Bøggild, H.-G. Rubahn, J. Phys. C 61, 565 (2007)

    CAS  Google Scholar 

  34. F. Balzer, H.-G. Rubahn, Surf. Sci. 548, 170 (2004)

    Article  ADS  CAS  Google Scholar 

  35. K.N. Baker, A.V. Fratini, T. Resch, H.C. Knachel, Polymer 34, 1571 (1993)

    Article  CAS  Google Scholar 

  36. M. Fanti, J. Almlöf, J. Mol. Struct. (Theochem) 388, 305 (1996)

    CAS  Google Scholar 

  37. B. Champagne, E. Perpète, D. Jacquemin, S. van Gisbergen, E.-J. Baerends, C. Soubra-Ghaoui, K.A. Robins, B. Kritman, J. Phys. Chem. A 104, 4755 (2000)

    Article  CAS  Google Scholar 

  38. The second order susceptibilities β cannot be determined accurately by DFT methods because these tend to significantly overestimate these as it has been observed for other π-conjugated push–pull systems before: D. Jacquemin, J. Chem. Theory Comput. 1, 307 (2005)

    Article  CAS  Google Scholar 

  39. N. Matsuzawa, D.A. Dixon, Int. J. Quant. Chem. 44, 497 (1992)

    Article  CAS  Google Scholar 

  40. H. Schmidt, G. Schultz, Liebigs Ann. 203, 129 (1880)

    Google Scholar 

  41. (a) M.L. Scheinbaum, J. Chem. Soc.: Chem. Commun. 1235 (1969). (b) T.G. Pavlopoulos, P.R. Hammond, J. Am. Chem. Soc. 96, 6568 (1974)

    Google Scholar 

  42. (a) M.A. Keegstra, S. De Feyter, F.C. De Schryver, K. Müllen, Angew. Chem. 108, 830 (1996); Angew. Chem. Int. Ed. 35, 774 (1996). (b) V.S. Iyer, M. Wehmeier, J.D. Brand, M.A. Keegstra, K. Müllen, Angew. Chem. 109, 1676 (1997); Angew. Chem. Int. Ed. 36, 1604 (1997). (c) M. Müller, V.S. Iyer, C. Kübel, V. Enkelmann, K. Müllen, Angew. Chem. 109, 1679 (1997); Angew. Chem. Int. Ed. 36, 1607 (1997). (d) A. Fechtenkötter, K. Saalwächter, M.A. Harbison, K. Müllen, H.W. Spiess, Angew. Chem. 111, 3224 (1999); Angew. Chem. Int. Ed. 38, 3039 (1999). (e) S. Ito, P.T. Herwig, T. Böhme, J.P. Rabe, W. Rettig, K. Müllen, J. Am. Chem. Soc. 122, 7698 (2000)

    Article  Google Scholar 

  43. (a) J.K. Stille, R.O. Rakutis, H. Mukamal, F.W. Harris, Macromolecules 1, 431 (1968). (b) F. Morgenroth, E. Reuther, K. Müllen, Angew. Chem. 109, 647 (1997); Angew. Chem. Int. Ed. 36, 631 (1997). (c) U.-M. Wiesler, K. Müllen, Chem. Commun. 2293 (1999). (d) F. Dötz, J.D. Brand, S. Ito, L. Gherghel, K. Müllen, J. Am. Chem. Soc. 122, 7707 (2000). (e) U.-M. Wiesler, A.J. Berresheim, F. Morgenroth, G. Lieser, K. Müllen, Macromolecules 34, 187 (2001). (f) T. Weil, U.-M. Wiesler, A. Herrmann, R. Bauer, J. Hofkens, F.C. De Schryver, K. Müllen, J. Am. Chem. Soc. 123, 8101 (2001). (g) C.D. Simpson, J.D. Brand, A.J. Berresheim, L. Przybilla, H.J. Räder, K. Müllen, Chem. Eur. J. 8, 1424 (2002)

    Article  ADS  CAS  Google Scholar 

  44. G. Subramaniam, R.K. Gilpin, Synthesis 1232 (1992)

    Google Scholar 

  45. (a) H. Hart, K. Harada, Tetrahedron Lett. 26, 29 (1985). (b) H. Hart, K. Harada, C.-J. Frank Du, J. Org. Chem. 50, 3104 (1985). (c) K. Harada, H. Hart, C.-J. Frank Du, J. Org. Chem. 50, 5524 (1985). (d) C.-J. Frank Du, H. Hart, K.-K.D. Ng, J. Org. Chem. 51, 3162 (1986)

    Article  CAS  Google Scholar 

  46. (a) A. Rebmann, J. Zhou, P. Schuler, H.B. Stegmann, A. Rieker, J. Chem. Res. (S) 318 (1996). (b) A. Rebmann, J. Zhou, P. Schuler, A. Rieker, H.B. Stegmann, J. Chem. Soc.: Perkin Trans. 2 1615 (1997)

    Google Scholar 

  47. J. Harley-Mason, F.G. Mann, J. Chem. Soc. 1379 (1940)

    Google Scholar 

  48. (a) A. de Meijere, F. Diederich (ed.), Metal-Catalyzed Cross-Coupling Reactions, 2nd edn. (Wiley-VCH, Weinheim, 2004). (b) J.J. Lie, G.W. Gribble, Palladium in Heterocyclic Chemistry (Pergamon/Elsevier, New York/Amsterdam, 2000). (c) N. Miyaura (Hrsg.), Cross-Coupling Reactions (Springer, Berlin Heidelberg New York, 2002). (d) Recent special issue on cross-coupling reactions: K. Tamao, T. Hiyama, E. Negishi (ed.), J. Organomet. Chem. 653, 1 (2002)

    Google Scholar 

  49. Examples for Nickel-catalysed Kharash couplings: (a) H. Saitoh, K. Saito, Y. Yamamura, H. Matsuyama, K. Kikuchi, M. Iyoda, I. Ikemoto, Bull. Chem. Soc. Jpn 66, 2847 (1993). (b) V.A. Ung, D.A. Bardwell, J.C. Jeffery, J.P. Maher, J.A. McCleverty, M.D. Ward, A. Williamson, Inorg. Chem. 35, 5290 (1996). (c) A. Abdul-Rahman, A.A. Amoroso, T.N. Branston, A. Das, J.P. Maher, J.A. McCleverty, M.D. Ward, A. Wlodarczyk, Polyhedron 16, 4353 (1997)

    Google Scholar 

  50. Examples for Palladium-catalysed Kharash couplings: (a) J.K. Kallitsis, F. Kakali, K.G. Gravalos, Macromolecules 27, 4509 (1994). (b) J.K. Kallitsis, K.G. Gravalos, A. Hilberer, G. Hadziioannou, Macromolecules 30, 2989 (1997). (c) J.M. Kauffmann, Synthesis 918 (1999). (d) R. Rathore, C.L. Burns, M.I. Deselnicu, Org. Lett. 3, 2887 (2001)

    Article  ADS  Google Scholar 

  51. Examples for Palladium-catalysed Suzuki couplings: (a) P. Liess, V. Hensel, A.-D. Schlüter, Liebigs Ann. 1037 (1996). (b) J. Fran, B. Karakaya, A. Schäfer, A.D. Schlüter, Tetrahedron 53, 15459 (1997). (c) V. Hensel, A.-D. Schlüter, Chem. Eur. J. 5, 421 (1999). (d) N. Sakai, K.C. Brennan, L.A. Weiss, S. Matile, J. Am. Chem. Soc. 119, 8726 (1997). (e) B. Ghebremariam, S. Matile, Tetrahedron Lett. 39, 5335 (1998). (f) B. Ghebremariam, V. Sidorov, S. Matile, Tetrahedron Lett. 40, 1445 (1999). (g) J.-Y. Winum, S. Matile, J. Am. Chem. Soc. 121, 7961 (1999). (h) F. Robert, J.-Y. Winum, N. Sakai, D. Gerard, S. Matile, Org. Lett. 2, 37 (2000). (i) N. Sakai, D. Gerard, S. Matile, J. Am. Chem. Soc. 123, 2517 (2001). (j) N. Sakai, S. Matile, J. Am. Chem. Soc. 124, 1184 (2002). (k) P. Galda, M. Rehahn, Synthesis 614 (1996). (l) S. Kim, J. Jackiw, E. Robinson, K.S. Schanze, J.R. Reynolds, Macromolecules 31, 964 (1998). (m) M.B. Goldfinger, K.B. Crawford, T.M. Swager, J. Org. Chem. 63, 1676 (1998). (n) F.D. Konstandakopoulou, K.G. Gravalos, J.K. Kallitsis, Macromolecules 31, 5264 (1998). (o) A. Morikawa, Macromolecules 31, 5999 (1998). (p) B. Schlicke, P. Belser, L. De Cola, E. Sabbioni, V. Balzani, J. Am. Chem. Soc. 121, 4207 (1999). (q) P.N. Taylor, M.J. O’Connell, L.A. McNeill, M.J. Hall, R.T. Alpin, H.L. Anderson, Angew. Chem. 112, 3598 (2000); Angew. Chem. Int. Ed. 39, 3456 (2000). (r) M.W. Read, J.O. Escobedo, D.M. Willis, P.A. Beck, R.M. Strongin, Org. Lett. 2, 3201 (2000). (s) S.-W. Hwang, Y. Chen, Macromolecules 34, 2981 (2001). (t) J.-W. Park, M.D. Ediger, M.M. Green, J. Am. Chem. Soc. 123, 49 (2001). (u) X. Deng, A. Mayeux, C. Cai, J. Org. Chem. 67, 5279 (2002). (v) S. Lightowler, M. Hird, Chem. Mater. 16, 3963 (2004). (w) S. Lightowler, M. Hird, Chem. Mater. 27, 5538 (2005)

    Google Scholar 

  52. (a) V. Percec, S. Okita, J. Polym. Sci.: Part A 31, 877 (1993). (b) A. Morikawa, Macromolecules 31, 5999 (1998). (c) Z.H. Li, M.S. Wong, Y. Tao, M. D’Iorio, J. Org. Chem. 69, 921 (2004). (d) M. Lee, C.-J. Jang, J.-H. Ryu, J. Am. Chem. Soc. 126, 8082 (2004). (e) J.-H. Ryu, C.-J. Jang, Y.-S. Yoo, S.-G. Lim, M. Lee, J. Org. Chem. 70, 8956 (2005). (f) S. Welter, N. Salluce, A. Benetti, N. Rot, P. Belser, P. Sonar, A.C. Grimsdale, K. Müllen, M. Lutz, A.L. Spek, L. de Cola, Inorg. Chem. 44, 4706 (2005)

    CAS  Google Scholar 

  53. M. Schiek, K. Al-Shamery, A. Lützen, Synthesis 613 (2007)

    Google Scholar 

  54. R.A. Knurr, S.W. Bailey, Clays Clay Miner. 34, 7 (1986)

    Article  CAS  Google Scholar 

  55. K. Müller, C.C. Chang, Surf. Sci. 14, 39 (1972)

    Article  Google Scholar 

  56. D.T. Griffen, Silicate Crystal Chemistry (Oxford University Press, New York, 1992)

    Google Scholar 

  57. First results have been published: (a) M. Schiek, A. Lützen, R. Koch, K. Al-Shamery, F. Balzer, R. Frese, H.-G. Rubahn, Appl. Phys. Lett. 86, 153107/1 (2005). (b) M. Schiek, A. Lützen, K. Al-Shamery, F. Balzer, H.-G. Rubahn, Surf. Sci. 600, 4030 (2006). (c) M. Schiek, A. Lützen, K. Al-Shamery, F. Balzer, H.-G. Rubahn, Cryst. Growth Des. 7, 229 (2007)

    Article  ADS  CAS  Google Scholar 

  58. M. Schiek, T. Bruhn, K. Al-Shamery, R. Koch, A. Lützen, F. Balzer, J. Brewer, H.-G. Rubahn, Unpublished results

    Google Scholar 

  59. F. Balzer, K. Al-Shamery, R. Neuendorf, H.-G. Rubahn. Chem. Phys. Lett. 368, 307 (2003)

    Article  ADS  CAS  Google Scholar 

  60. (a) J. Brewer, H.H. Henrichsen, F. Balzer, L. Bagatolli, A.C. Simonsen, H.-G. Rubahn, Proc. SPIE 5931, 250 (2005). (b) J. Brewer, C. Maibohm, L. Jozefowski, L. Bagatolli, H.-G. Rubahn, Nanotechnology 16, 2396 (2005)

    ADS  Google Scholar 

  61. J. Brewer, M. Schiek, A. Lützen, K. Al-Shamery, H.-G. Rubahn, Nano Lett. 6, 2656 (2006)

    Article  PubMed  ADS  CAS  Google Scholar 

  62. J. Roncalli, Chem. Rev. 97, 173 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Al-Shamery, K., Schiek, M., Koch, R., Lützen, A. (2008). Tailored Organic Nanoaggregates Generated by Self-Assembly of Designed Functionalised p-Quaterphenylenes on Muscovite Mica Substrates. In: Al-Shamery, K., Rubahn, HG., Sitter, H. (eds) Organic Nanostructures for Next Generation Devices. Materials Science, vol 101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71923-6_4

Download citation

Publish with us

Policies and ethics