Skip to main content

Device Treatment of Organic Nanofibers: Embedding, Detaching, and Cutting

  • Chapter
Organic Nanostructures for Next Generation Devices

Part of the book series: Materials Science ((SSMATERIALS,volume 101))

  • 1311 Accesses

It has been demonstrated thoroughly that organic molecules such as phenylenes can form long, quasisingle crystalline aggregates (“nanofibers” or “nanoneedles”) of parallel to the surface-oriented molecules on cleaved muscovite mica upon vapor deposition (organic molecular beam epitaxy, OMBE). Phenylenes of that kind are rodlike molecules of usually between four and six benzene rings, which emit polarized blue light after UV excitation below 400 nm. Via functionalization with, e.g., methyl oxide or chlorine end groups the emission spectra can be significantly modified. The surface grown nanofibers are all mutually parallel oriented because of strong electric dipole fields on the mica surface and a quasi-heteroepitaxial relationship between adsorbate and substrate [1, 2]. That way domains of parallel aggregates up to square centimeter size are grown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Balzer, H.G. Rubahn, Appl. Phys. Lett. 79, 3860 (2001)

    Article  ADS  CAS  Google Scholar 

  2. F. Balzer, H.G. Rubahn, Adv. Funct. Mater. 15, 17 (2005)

    Article  CAS  Google Scholar 

  3. F. Balzer, V. Bordo, A. Simonsen, H.G. Rubahn, Appl. Phys. Lett. 82, 10 (2003)

    Article  ADS  CAS  Google Scholar 

  4. F. Quochi, F. Cordella, A. Mura, G. Bongiovanni, F. Balzer, H.G. Rubahn, Appl. Phys. Lett. 88, 041106 (2006)

    Article  ADS  CAS  Google Scholar 

  5. NIST Standard Reference Database 81 (http://srdata.nist.gov/insulation) and The Physics Hypertextbook, http://hypertextbook.com/thermal/conduction, and Landolt-Börnstein 1983

  6. C. Clauser, E. Huenges, in Rock Physics and Phase Relations – A Handbook of Physical Constants, ed. by T. Ahrens (AGU reference shelf 3, American Geophysical Union, Washington DC, 1995), p. 119, and Landolt-Börnstein 1983

    Google Scholar 

  7. Y. Fei, in Mineral Physics and Crystallography – A Handbook of Physical Constants, ed. by T. Ahrens (AGU reference shelf 1, American Geophysical Union, Washington DC, 1995), p. 29

    Google Scholar 

  8. R. Hammond, K. Pencheva, K. Roberts, P. Mougin, D. Wilkinson, J. Appl. Cryst. 38, 1038 (2005)

    Article  CAS  Google Scholar 

  9. G. Heimel, P. Puschnig, M. Oehzelt, K. Hummer, B. Koppelhuber-Bitschnau, F. Porsch, C. Ambrosch-Draxl, R. Resel, J. Phys.: Cond. Matt. 15, 3375 (2003)

    Article  ADS  CAS  Google Scholar 

  10. X. Huang, K. Terashima, K. Hoshikawa, Jpn. J. Appl. Phys. 38, L1153 (1999)

    Article  ADS  CAS  Google Scholar 

  11. T. Carlberg, J. Electrochem. Soc. 133, 1940 (1986)

    Article  CAS  Google Scholar 

  12. F. Kolb, Wachstum und Charakterisierung von Siliziumnanodrähten. Ph.D. thesis, Martin-Luther Universität Halle-Wittenberg (2005). Electronic document identification urn:nbn:de:gbv:3-000008655

    Google Scholar 

  13. H. Philipp, J. Phys. Chem. Solids 32, 1935 (1971)

    Article  ADS  CAS  Google Scholar 

  14. H. Philipp, J. Non-Cryst. Solids 8–10, 627 (1972)

    Article  Google Scholar 

  15. G. Brady, J. Phys. Chem. 63, 1119 (1959)

    Article  CAS  Google Scholar 

  16. R. Temkin, J. Non-Cryst. Solids 17, 215 (1975)

    Article  ADS  CAS  Google Scholar 

  17. A. Hohl, T. Wieder, P. Van Aken, T. Weirich, G. Denninger, M. Vidal, S. Oswald, C. Deneke, J. Mayer, H. Fuess, J. Non-Cryst. Solids 320, 255 (2003)

    Article  ADS  CAS  Google Scholar 

  18. W. Gerberich, M. Cordill, Rep. Prog. Phys. 69, 2157 (2006)

    Article  ADS  CAS  Google Scholar 

  19. D. Drouin, A. Couture, R. Gauvin, P. Hovington, P. Horny, H. Demers, CASINO, monte CArlo SImulation of electroN trajectory in sOlids (Univ. of Sherbrooke, Sherbrooke, Quebec, Canada). http://www.gel.usherbrooke.ca/casino/. Additional calculation parameters chosen: Total and partial cross section: Mott by interpolation, effective section ionisation: Casnati, ionisation potential: Joy and Luo 1989, random number generator: Press et al. 1986, direct cosin: Soum et al. 1979, dE/ds calculation: Joy and Luo 1989

  20. Used procedure: “flatten filter” using paths crossing the steps followed by several line fits. The WSxM free software: http://www.nanotec.es

  21. C. Maibohm, J. Brewer, H. Sturm, F. Balzer, H.G. Rubahn, J. Appl. Phys. 100, 054304 (2006)

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sturm, H., Rubahn, H.G. (2008). Device Treatment of Organic Nanofibers: Embedding, Detaching, and Cutting. In: Al-Shamery, K., Rubahn, HG., Sitter, H. (eds) Organic Nanostructures for Next Generation Devices. Materials Science, vol 101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71923-6_13

Download citation

Publish with us

Policies and ethics