Skip to main content

Device-Oriented Studies on Electrical, Optical, and Mechanical Properties of Individual Organic Nanofibers

  • Chapter
Organic Nanostructures for Next Generation Devices

Part of the book series: Materials Science ((SSMATERIALS,volume 101))

  • 1340 Accesses

Organic nanofibers are promising candidates for future nanophotonic and nanoelectronic devices due to their optical, electrical, chemical, and morphological properties. Para-hexaphenylene (p6P) as well as diverse functionalized quaterphenylene molecules such as p-methyloxylated p-quaterphenylene (MOP4) [1] or p-chlorinated p-quaterphenylene (CLP4) [2] form well-aligned needles or “nanofibers” upon vacuum epitaxy on muscovite mica substrates [3, 4]. In this chapter we will use the words “nanofiber” and “needle” synonymously. The nanofibers consist of large single crystalline areas of molecules oriented nearly parallel to the substrate surface with typical dimensions of a few hundred nanometers in width, a few ten nanometers in height, and several hundred micrometers in length. Partly due to their crystalline order and morphology the nanofibers show photonic functionalities such as waveguiding [5–7], lasing [8] as well as nonlinear optical activity [9, 10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Schiek, A. Lützen, R. Koch, K. Al-Shamery, F. Balzer, R. Frese, H.G. Rubahn, Appl. Phys. Lett. 86, 153107 (2005)

    Article  ADS  CAS  Google Scholar 

  2. M. Schiek, A. Lützen, K. Al-Shamery, F. Balzer, H.G. Rubahn, Cryst. Growth Design 7(2), 229 (2007)

    Article  CAS  Google Scholar 

  3. F. Balzer, H.G. Rubahn, Appl. Phys. Lett. 79, 3860 (2001)

    Article  ADS  CAS  Google Scholar 

  4. F. Balzer, H.G. Rubahn, Adv. Funct. Mater. 15, 17 (2005)

    Article  CAS  Google Scholar 

  5. H. Yanagi, T. Ohara, T. Morikawa, Adv. Mat. 13, 1452 (2001)

    Article  CAS  Google Scholar 

  6. F. Balzer, V. Bordo, A. Simonsen, H.G. Rubahn, Appl. Phys. Lett. 82, 10 (2003)

    Article  ADS  CAS  Google Scholar 

  7. F. Balzer, V. Bordo, A. Simonsen, H.G. Rubahn, Phys. Rev. B 67, 115408 (2003)

    Article  ADS  CAS  Google Scholar 

  8. F. Quochi, F. Cordella, A. Mura, G. Bongiovanni, F. Balzer, H.G. Rubahn, Appl. Phys. Lett. 88, 041106 (2006)

    Article  ADS  CAS  Google Scholar 

  9. F. Balzer, K. Al Shamery, R. Neuendorf, H.G. Rubahn, Chem. Phys. Lett. 368, 307 (2003)

    Article  ADS  CAS  Google Scholar 

  10. J. Brewer, M. Schiek, A. Lützen, K. Al-Shamery, H.G. Rubahn, Nano Lett. 6, 2656 (2006)

    Article  PubMed  ADS  CAS  Google Scholar 

  11. L. Marty, V. Bouchiat, A. Bonnot, M. Chaumont, T. Fournier, S. Decossas, S. Roche, Microelectron. Eng. 61–62, 485 (2002)

    Article  Google Scholar 

  12. A. Briseno, J. Aizenberg, Y.J. Han, R. Penkala, H. Moon, A. Lovinger, C. Kloc, Z. Bao, J. Am. Chem. Soc. 127, 12164 (2005)

    Article  PubMed  CAS  Google Scholar 

  13. F. Balzer, H.G. Rubahn. Patent PA 2004 01676

    Google Scholar 

  14. J. Brewer, C. Maibohm, L. Jozefowski, L. Bagatolli, H.G. Rubahn, Nanotechnology 16, 2396 (2005)

    Article  ADS  CAS  Google Scholar 

  15. A. Tsumura, H. Koezuka, T. Ando, Appl. Phys. Lett. 49, 1210 (1986)

    Article  ADS  CAS  Google Scholar 

  16. S. Nelson, Y.Y. Lin, D. Gundlach, T. Jackson, Appl. Phys. Lett. 72, 1854 (1998)

    Article  ADS  CAS  Google Scholar 

  17. V. Podzorov, V. Pudalov, M. Gershenson, Appl. Phys. Lett. 82, 1739 (2003)

    Article  ADS  CAS  Google Scholar 

  18. V. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. Willett, T. Someya, M. Gershenson, J. Rogers, Science 303, 1644 (2004)

    Article  PubMed  ADS  CAS  Google Scholar 

  19. R. de Boer, M. Gershenson, A. Morpurgo, V. Podzorov, Phys. Stat. Sol. (A) 201, 1302 (2004)

    Article  ADS  CAS  Google Scholar 

  20. C. Tang, S. VanSlyke, Appl. Phys. Lett. 51, 913 (1987)

    Article  ADS  CAS  Google Scholar 

  21. M. Era, T. Tsutsui, S. Saito, Appl. Phys. Lett. 67, 2436 (1995)

    Article  ADS  CAS  Google Scholar 

  22. F. Boroumand, P. Fry, D. Lidzey, Nano Lett. 5, 67 (2005)

    Article  PubMed  ADS  CAS  Google Scholar 

  23. H. Yamamoto, J. Wilkinson, J. Long, K. Bussman, J. Christodoulides, Z. Kafafi, Nano Lett. 5, 2485 (2005)

    Article  PubMed  ADS  CAS  Google Scholar 

  24. H. Ishii, K. Sugiyama, E. Ito, K. Seki, Adv. Mater. 11, 605 (1999)

    Article  CAS  Google Scholar 

  25. M. Lambert, P. Mark, Current Injection in Solids (Academic, New York, 1970)

    Google Scholar 

  26. I. Parker, J. Appl. Phys. 75, 1656 (1994)

    Article  ADS  CAS  Google Scholar 

  27. P. Davids, I. Campbell, D. Smith, J. Appl. Phys. 82, 6319 (1997)

    Article  ADS  CAS  Google Scholar 

  28. V. Arkhipov, E. Emelianova, Y. Tak, H. Bässler, J. Appl. Phys. 84, 848 (1998)

    Article  ADS  CAS  Google Scholar 

  29. U. Wolf, V. Arkhipov, H. Bässler, Phys. Rev. B 59, 7507 (1999)

    Article  ADS  CAS  Google Scholar 

  30. Y. Shen, A. Hosseini, M. Wong, G. Malliaras, Chem. Phys. Chem. 5, 16 (2004)

    PubMed  CAS  Google Scholar 

  31. A. Hepp, H. Heil, W. Weise, M. Ahles, R. Schmechel, H. von Seggern, Phys. Rev. Lett. 91, 157406 (2003)

    Article  PubMed  ADS  CAS  Google Scholar 

  32. M. Pfeiffer, S. Forrest, in Nanoelectronics and Information, ed. by R. Wasser (Wiley-VCH, Berlin, 2005)

    Google Scholar 

  33. J. Kjelstrup-Hansen, H. Henrichsen, P. Bøgild, H.G. Rubahn, Thin Solid Films 515, 827 (2006)

    Article  ADS  CAS  Google Scholar 

  34. J. Kjelstrup-Hansen, S. Dohn, D. Nørgaard Madsen, K. Mølhave, P. Bøggild, J. Nanosci. Nanotechnol. 6, 1995 (2006)

    Article  PubMed  CAS  Google Scholar 

  35. R. de Boer, M. Jochemsen, T. Klapwijk, A. Morpurgo, J. Niemax, A. Tripathi, J. Pflaum, J. Appl. Phys. 95, 1196 (2004)

    Article  ADS  CAS  Google Scholar 

  36. J. Geurst, phys. stat. sol. 15, 107 (1966)

    Article  CAS  Google Scholar 

  37. D. Gundlach, Y.Y. Lin, T. Jackson, D. Schlom, Appl. Phys. Lett. 71, 3853 (1997)

    Article  ADS  CAS  Google Scholar 

  38. H. Henrichsen, J. Kjelstrup-Hansen, D. Engstrøm, C. Clausen, P. Bøggild, H.G. Rubahn, Org. Electron. 8, 540 (2007)

    Article  CAS  Google Scholar 

  39. N. Koch, E. Zojer, A. Rajagopal, J. Ghjisen, R. Johnson, G. Leising, J.J. Pireaux, Adv. Funct. Mat. 11, 51 (2001)

    Article  CAS  Google Scholar 

  40. H. Michaelson, J. Appl. Phys. 48, 4729 (1977)

    Article  ADS  CAS  Google Scholar 

  41. F. Meghdadi, S. Tasch, B. Winkler, W. Fischer, F. Stelzer, G. Leising, Synth. Met. 85, 1441 (1997)

    Article  CAS  Google Scholar 

  42. N. Koch, A. Pogantsch, E. List, G. Leising, R. Blyth, M. Ramsey, F. Netzer, Appl. Phys. Lett. 74, 2909 (1999)

    Article  ADS  CAS  Google Scholar 

  43. J. Kjelstrup-Hansen, P. Bøggild, J. Hvam, A. Majcher, H.G. Rubahn, Phys. Stat. Sol. (a) 203, 1459 (2006)

    Article  ADS  CAS  Google Scholar 

  44. K. Gjerde, J. Kjelstrup-Hansen, C. Clausen, K. Teo, W. Milne, H.G. Rubahn, P. Bøggild, Nanotechnology 17, 4917 (2006)

    Article  ADS  CAS  Google Scholar 

  45. R. Resel, Thin Solid Films 433, 1 (2003)

    Article  ADS  CAS  Google Scholar 

  46. P. Puschnig, K. Hummer, C. Ambrosch-Draxl, G. Heimel, M. Oehzelt, R. Resel, Phys. Rev. B 67, 235321 (2003)

    Article  ADS  CAS  Google Scholar 

  47. J. Brédas, D. Beljonne, J. Cornil, J. Calbert, Z. Shuai, R. Silbey, Synth. Met. 125, 107 (2001)

    Article  Google Scholar 

  48. J. Kjelstrup-Hansen, O. Hansen, H.G. Rubahn, P. Bøggild, Small 2, 660 (2006)

    Article  PubMed  CAS  Google Scholar 

  49. M. Guthold, W. Liu, B. Stephens, S. Lord, R. Hantgan, D. Erie, R. Taylor, Jr., R. Superfine, Biophys. J. 87, 4226 (2004)

    Article  PubMed  CAS  Google Scholar 

  50. R. Taylor II, J. Chen, S. Okimoto, N. Llopis-Artime, V. Chi, F. Brooks, M. Falvo, M. Paulson, P. Thiansathaporn, D. Glick, S. Washburn, R. Superfine, Proc. IEEE Vis. Conf. (1997)

    Google Scholar 

  51. L. Landau, E. Lifshitz, Theory of Elasticity, Course of Theoretical Physics, vol. 7, 3rd edn. (Butterworth-Heinemann, Oxford, 1986)

    Google Scholar 

  52. P. Sheehan, C. Lieber, Science 272, 1158 (1996)

    Article  PubMed  ADS  CAS  Google Scholar 

  53. N. Franklin, Y. Li, R. Chen, A. Javey, H. Dai, Appl. Phys. Lett. 79, 4571 (2001)

    Article  ADS  CAS  Google Scholar 

  54. R. He, D. Gao, R. Fan, A. Hochbaum, C. Carraro, R. Maboudian, P. Yang, Adv. Mater. 17, 2098 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kjelstrup-Hansen, J., Bøggild, P., Henrichsen, H.H., Brewer, J., Rubahn, H.G. (2008). Device-Oriented Studies on Electrical, Optical, and Mechanical Properties of Individual Organic Nanofibers. In: Al-Shamery, K., Rubahn, HG., Sitter, H. (eds) Organic Nanostructures for Next Generation Devices. Materials Science, vol 101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71923-6_12

Download citation

Publish with us

Policies and ethics