Skip to main content

Fundamentals of Organic Film Growth and Characterisation

  • Chapter
Organic Nanostructures for Next Generation Devices

Part of the book series: Materials Science ((SSMATERIALS,volume 101))

Currently, technical applications of organic nanoaggregates are discussed for various purposes like displays, electronic circuits, sensors and optical waveguides. In all these cases, the optical and electronic properties (and also the combination of both) are decisive parameters. Why are the structural properties of the nanoaggregates so important? The reason is the strong relationship between the structure (arrangement of the molecules within the bulk state) of the nanoaggregates and the application-relevant properties: optical emission and electronic charge transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Gutmann, L. Lyons, Organic Semiconductors (Wiley, New York, 1967)

    Google Scholar 

  2. M. Pope, C. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd edn. (Oxford University Press, New York, 1999)

    Google Scholar 

  3. T. Mikami, H. Yanagi, Appl. Phys. Lett. 73, 563 (1998)

    Article  ADS  CAS  Google Scholar 

  4. F. Balzer, V. Bordo, A. Simonsen, H.G. Rubahn, Appl. Phys. Lett. 82, 10 (2003)

    Article  ADS  CAS  Google Scholar 

  5. N. Karl, Charge-Carrier Mobility in Organic Crystals (Springer, Berlin Heidelberg New York, 2003)

    Google Scholar 

  6. E. Silinsh, V. Capek, Organic Molecular Crystals (American Institute of Physics, New York, 1994)

    Google Scholar 

  7. J. Bredas, J. Calbert, D. de Silva, J. Cornil, Proc. Natl Acad. Sci. USA 99, 5804 (2002)

    Article  PubMed  ADS  CAS  Google Scholar 

  8. J. Laquindanum, H. Katz, A. Lovinger, A. Dodabalapur, Chem. Mater. 8, 2542 (1996)

    Article  CAS  Google Scholar 

  9. G. Horowitz, M. Hjlaoui, Adv. Mater. 12, 1046 (2000)

    Article  CAS  Google Scholar 

  10. M. Gebhart, Crystal Growth: An Introduction (North Holland, Amsterdam, 1973), Chap. Epitaxy, p. 105

    Google Scholar 

  11. G. Stringfellow, Rep. Prog. Phys. 45, 469 (1982)

    Article  ADS  Google Scholar 

  12. M.A. Herman, W. Richter, H. Sitter, Epitaxy – Physical Principles and Technical Implementation, Springer Series in Material Sciences 62 (Springer, Berlin Heidelberg New York, 2004)

    Google Scholar 

  13. E.J. Kintzel, D.M. Smilgies, J.G. Skofronick, S.A. Safron, D.H.V. Winkle, J. Cryst. Growth 289, 345 (2006)

    Article  ADS  CAS  Google Scholar 

  14. S. Huefner, Photoelectron Spectroscopy (Springer, Berlin Heidelberg New York, 1995)

    Google Scholar 

  15. S.D. Kevan (ed.), Angle-Resolved Photoemission (Elsevier, Amsterdam, 1982)

    Google Scholar 

  16. E.W. Plummer, W. Eberhardt, Adv. Chem. Phys. 49, 533 (1982)

    Article  CAS  Google Scholar 

  17. H.P. Steinrück, J. Phys.: Condens. Matter 8, 6465 (1996)

    Article  ADS  Google Scholar 

  18. K. Jacobi, Landolt-Börnstein (New Series), vol. 24 (Springer, Berlin Heidelberg New York, 1994), Chap. Electronic structure of surfaces, p. 56

    Google Scholar 

  19. R. Duschek, F. Mittendorfer, R. Blyth, F. Netzer, J. Hafner, M. Ramsey, Chem. Phys. Lett. 318, 43 (2000)

    Article  ADS  CAS  Google Scholar 

  20. M.G. Ramsey, D. Steinmüller, M. Schatzmayr, M. Kiskinova, F.P. Netzer, Chem. Phys. 177, 349 (1993)

    Article  CAS  Google Scholar 

  21. F.P. Netzer, M.G. Ramsey, Crit. Rev. Solid State Mater. Sci. 17, 397 (1992)

    Article  CAS  Google Scholar 

  22. J.P. Maier, D.W. Turner, Faraday Discuss. Chem. Soc. 54, 149 (1972)

    Article  Google Scholar 

  23. M.G. Ramsey, D. Steinmüller, F.P. Netzer, J. Chem. Phys. 92, 6210 (1990)

    Article  ADS  CAS  Google Scholar 

  24. G. Koller, F.P. Netzer, M.G. Ramsey, Surf. Sci. 421, 353 (1999)

    Article  ADS  CAS  Google Scholar 

  25. G. Koller, R.I.R. Blyth, S.A. Sardar, F.P. Netzer, M. Ramsey, Surf. Sci. 536, 155 (2003)

    Article  ADS  CAS  Google Scholar 

  26. D. Steinmüller, M.G. Ramsey, F.P. Netzer, Phys. Rev. B 47, 13323 (1993)

    Article  ADS  Google Scholar 

  27. G. Koller, S. Berkebile, J. Krenn, G. Tzvetkov, C. Teichert, R. Resel, F.P. Netzer, M.G. Ramsey, Adv. Mater. 16, 2159 (2004)

    Article  CAS  Google Scholar 

  28. B. Winter, S. Berkebile, J. Ivanco, G. Koller, F.P. Netzer, M.G. Ramsey, Appl. Phys. Lett. 88, 253111 (2006)

    Article  ADS  CAS  Google Scholar 

  29. M.G. Ramsey, F.P. Netzer, D. Steinmüller, D. Steinmüller-Nethl, D.R. Lloyd, J. Chem. Phys. 97, 4489 (1992)

    Article  ADS  CAS  Google Scholar 

  30. J. Stöhr, NEXAFS Spectroscopy, Springer Series in Surface Sciences 25 (Springer, Berlin Heidelberg New York, 1992)

    Google Scholar 

  31. The Calculations Were Performed Using the StoBe (Stockholm Berlin 2005) Programm Package by K. Hermann, L.G.M. Pettersson, a Modified Version of the DFT-LCGTO Programm Package deMon by A. St.-Amant and D. Salahub (University of Montreal)

    Google Scholar 

  32. E.g. the SMART (Spectro-Microscope with Aberration Correction for Resolution and Transmission Enhancement) Project Stationed at the Synchrotron Radiation Facility BESSY II, Berlin

    Google Scholar 

  33. G. Koller, F.P. Netzer, M.G. Ramsey, Surf. Sci. Lett. 559, L187 (2004)

    Article  ADS  CAS  Google Scholar 

  34. P. Sautet, Chem. Rev. 97, 1097 (1997)

    Article  PubMed  CAS  Google Scholar 

  35. B. Winter, J. Ivanco, F. Netzer, M.G. Ramsey, Thin Solid Films 433, 269 (2003)

    Article  ADS  CAS  Google Scholar 

  36. K. Herwig, J. Newton, H. Taub, Phys. Rev. B 50, 15287 (1994)

    Article  ADS  CAS  Google Scholar 

  37. J. Villarrubia, J. Res. Natl Inst. Stand. Technol. 102, 425 (1997)

    Google Scholar 

  38. C. Teichert, Phys. Rep. 365, 335 (2002)

    Article  ADS  CAS  Google Scholar 

  39. S. Kalinin, R. Shao, D. Bonnell, J. Am. Ceram. Soc. 88(5), 1077 (2005)

    Article  CAS  Google Scholar 

  40. K.L. Babcock, C.B. Prater, Application Note AN11, Veeco (2004)

    Google Scholar 

  41. R. Albrecht, P. Grütter, D. Rugar, J. Appl. Phys. 69, 668 (1991)

    Article  ADS  Google Scholar 

  42. S.N. Magonov, V. Elings, M.H. Whangbo, Surf. Sci. 375, L385 (1997)

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sitter, H., Resel, R., Koller, G., Ramsey, M.G., Andreev, A., Teichert, C. (2008). Fundamentals of Organic Film Growth and Characterisation. In: Al-Shamery, K., Rubahn, HG., Sitter, H. (eds) Organic Nanostructures for Next Generation Devices. Materials Science, vol 101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71923-6_1

Download citation

Publish with us

Policies and ethics