Skip to main content

Characterisation of Barrier Effects in Footwear

  • Chapter
Multifunctional Barriers for Flexible Structure

Part of the book series: Materials Science ((SSMATERIALS,volume 97))

Footwear is designed to provide comfort, pleasure and protect feet from hard and rough surfaces, as well as climate environmental exposure and in some cases aggressive conditions like protective footwear. Actually, consumers expectations and needs demand development of footwear that integrates fashion, emotional desires and real multifunctional performance namely barrier effect to water and other liquids, thermal insulation, fire resistance or microorganisms resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Directive 94/11/EC of 23 March 1994, Labelling of the Materials Used in the Main Components of Footwear

    Google Scholar 

  2. European Standard/International Standard Organizations International Stan-dard Organization EN ISO 20345:2004(E), Personal Protective Equipment -Safety Footwear (2004)

    Google Scholar 

  3. K. Bienkiewicz, Physical Chemistry of Leather Making(Robert E. Krieger, Malabar, FL, 1983)

    Google Scholar 

  4. J.H. Sharphouse, Leather Technician’s Handbook (Leather Producer’s Associa-tion, England, 1971)

    Google Scholar 

  5. H. Wachsmann, World Leather 30-32 (2004)

    Google Scholar 

  6. G. Reich, Leder Häutemarkt 1-2 (2003)

    Google Scholar 

  7. F. O’Flaherty, W.T. Roddy, R.M. Lollar, The Chemistry and Technology of Leather (Robert E. Krieger, Malabar, FL, 1978)

    Google Scholar 

  8. J. Ludvik, Chrome Management in the Tanyard, United Nations Industrial Development Organization (2000)

    Google Scholar 

  9. Leather Business Unit, Waterproofing Without Chrome or Other Metal Salts, World Leather, 2002, pp. 37-40

    Google Scholar 

  10. R. Beeby, Making Waterproof Footwear, World Footwear, 1996, pp. 14-22

    Google Scholar 

  11. European Standard/International Standard Organizations EN ISO20344: 2004(E), Personal Protective Equipment - Test Methods for Footwear (2004)

    Google Scholar 

  12. International Standard Organization ISO 5403:2002, Leather - Physical and Mechanical Tests - Determination of Water Resistance of Leather (2002)

    Google Scholar 

  13. European Standard (E) 13518:2001, Footwear - Test Methods for Uppers-Water Resistance (2001)

    Google Scholar 

  14. Deutsches Institut für Normung DIN 53338, Testing of Leather; Determination of the Behaviour Against Water Under Dynamic Stress in the Penetrometer

    Google Scholar 

  15. International Union of Leather Technologists and Chemists Societies - Physical Test Methods IUP 10:2000, Water Resistance of Flexible Leathers (2000)

    Google Scholar 

  16. American Society of Testing and Materials ASTM D 2099:2000, Standard Test Method for Dynamic Water Resistance of Shoe Upper Leather by the Maser Water Penetration Tester (2000)

    Google Scholar 

  17. International Standard Organization ISO2417:2002(E) IULTCS/IUP7, Leather-Physical and Mechanical Test - Determination of the Static Absorp-tion of Water (2002)

    Google Scholar 

  18. IUP 7:2000, Measurement of static absorption of water (2000)

    Google Scholar 

  19. International Union of Leather Technologists and Chemists Societies - Physical Test Methods IUP 45, Measurement of Water Penetration Pressure (2002)

    Google Scholar 

  20. C.L. Beyler, M.M. Hirschler, SFPE Handbook of Fire Protection Engineering, 3rd edn., NFPA, 1995, pp. 110-131, Chaps. 1-7

    Google Scholar 

  21. R.E. Lyon, M.L. Janssens, Polymer Flammability, U.S. Department of trans-portation - Federal Aviation Administration, DOT/FAA/AR-05/14, May 2005

    Google Scholar 

  22. American Society of Testing and Materials ASTM E176-99, Standard Termi-nology of Fire Standards (1999)

    Google Scholar 

  23. P. Budrugeac, V. Trandafir, M. G. Albu, J. Therm. Anal. Calorim. 72(2), 581-585 (2003)

    Article  CAS  Google Scholar 

  24. P. Budrugeac, L. Mil, V. Bocu, F.J. Wortman, C. Popescu, J. Therm. Anal. Calorim. 72(3), 1057-1064 (2003)

    Article  CAS  Google Scholar 

  25. C. Chahine, Thermochim. Acta 365(1-2), 101-110 (2000)

    Article  CAS  Google Scholar 

  26. K. Donmez, W.E. Kallenberger, J. Am. Leather Chem. Assoc. 87, 1-19 (1992)

    CAS  Google Scholar 

  27. International Standard Organization ISO 15025:2002, Protective Clothing-Protection Against Heat and Flame - Method of Test for Limited Flame Spread (2000)

    Google Scholar 

  28. International Standard Organization ISO 5660-1:2002, Reaction-to-Fire Tests -Heat Release, Smoke Production and Mass Loss Rate - Part 1: Heat Release Rate (Cone Calorimeter Method) (2002)

    Google Scholar 

  29. R.H. White, M.A. Dietenberger, Cone Calorimeter Evaluation of Wood Prod-ucts, 15th Annual BCC Conference on Flame Retardancy, Stamford, 2004

    Google Scholar 

  30. American Society of Testing and Materials ASTM D 2863:2000, Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastic (Oxygen Index) (2000)

    Google Scholar 

  31. E.D. Weil, M.M. Hirschler, N.G. Patel, M.M. Said, S. Shakir, Fire Mater. 16, 159-167 (2002)

    Article  Google Scholar 

  32. K. Dönmez, W.E. Kallenberger, J. Am. Leather Chem. Assoc. 86, 93-106 (1991)

    Google Scholar 

  33. Pyris Hardware for Windows, Cap2: DSC7, PerkinElmer Instruments, 2002

    Google Scholar 

  34. A.M. Manich, S. Cuadros, J. Cot, J. Carilla, A. Marsal, Thermochim. Acta 429(2),205-211 (2005)

    Article  CAS  Google Scholar 

  35. R.E. Lyon, R.N. Walters, J. Anal. Appl. Pyrolysis 71(1), 27-46 (2004)

    Article  CAS  Google Scholar 

  36. EN ISO 6942:2002, Protective Clothing - Protection Against Heat and Fire Method of Test: Evaluation of Materials and Material Assemblies When Exposed to a Source of Radiant Heat (2002)

    Google Scholar 

  37. European Standard EN 13519:2001(E), Footwear-Test Methods for Uppers-High Temperature Behaviour (2001)

    Google Scholar 

  38. American Society of Testing and Materials ASTM D 2214:2002, Standard Test Method for Estimating the Thermal Conductivity of Leather with the Cenco-Fitch Apparatus (2002)

    Google Scholar 

  39. A. Jordan, National Park Serv. 13(4), 1-4, (1993)

    ADS  Google Scholar 

  40. G.A. Rajkumar, N. Arunasri, T. Annamalai, M. Swamy, P.T. Perumal, J. Soc. Leather Chem. 81(5), 204-206, 1997.

    CAS  Google Scholar 

  41. A. Orlita, Int. Biodeteriorat. Biodegrad. 53, 157-163 (2004)

    Article  CAS  Google Scholar 

  42. M. Würtz, P.F.I. Pirmasens, Microbiological Test on Shoes and materials, Footwear Technology, March-April 2004

    Google Scholar 

  43. American Society of Testing and Materials ASTM D 4576-01, Standard Test Methods for Mold Growth Resistance of Wet Blue (2001)

    Google Scholar 

  44. OECD Emission Scenario Document, Additives in the Rubber Industry, Umwelt-bundesmt, Berlim, 2003

    Google Scholar 

  45. E. Mikkola, Polym. Int. 49, 1222-1225 (2000)

    Article  CAS  Google Scholar 

  46. http://ulstandardsinfonet.ul.com/scopes/0094.html

  47. P. Rybinski, G. Janowska, M. Helwig, W. Dabrowski, K. Majewski, J. Therm. Anal. Calorim. 75, 249-256 (2004)

    Article  CAS  Google Scholar 

  48. R.E. Lyon, L. Speitel, R.N. Walters, S. Crowley, Fire Mater. 27, 195-208 (2003)

    Google Scholar 

  49. J.L. Laird, G. Liolios, TA techniques for the Rubber Industry, Rubber World, 13-19 January 1990

    Google Scholar 

  50. F. Pruneda, J.J. Suñol, F. Andreu-Mateu, X. Colom, J. Therm. Anal. Calorim. 80(1),187-190 (2005)

    Google Scholar 

  51. A.A. Yehia, A.A. Mansour, B. Stoll, J. Therm. Anal. 48, 1299-1310 (1997)

    Article  CAS  Google Scholar 

  52. G. Janowska, P. Rybinski, J. Therm. Anal. Calorim. 78, 839-847 (2004)

    Google Scholar 

  53. A. Castrovinci, G. Camino, C. Drevelle, S. Duquesne, C. Magniez, M. Vouters, Eur. Polym. J. 41(9), 2023-2033 (2005)

    Article  CAS  Google Scholar 

  54. T.P. Wampler, J. Anal. Appl. Pyrol. 71(1), 1-12 (2004)

    Google Scholar 

  55. T.P. Wampler, J. Chromatogr. A 842, 207-220 (1999)

    Article  CAS  PubMed  Google Scholar 

  56. J.A. Hiltz, J. Anal. Appl. Pyrol. 55(2), 135-150 (2000)

    Google Scholar 

  57. M. Phair, T.P. Wampler, Rubber World, 215, 30-34 (1997)

    CAS  Google Scholar 

  58. S.-S. Choi, J. Anal. Appl. Pyrol. 55(2), 161-170 (2000)

    Google Scholar 

  59. S.-S. Choi, J. Anal. Appl. Pyrol. 62(2), 319-330 (2002)

    Google Scholar 

  60. International Standard Organization ISO 188:1998(E), Rubber, Vilcanized or Thermoplastic - Accelerated Ageing and Heat Resistance Tests (1998)

    Google Scholar 

  61. International NFPA 1971, Standard on Protective Ensemble for Structural Fire Fighting, 2000

    Google Scholar 

  62. American Society of Testing and Materials ASTM F695-01, Standard Practice for Ranking of Test Data Obtained for Measurement of Slip Resistance of Footwear Sole, Heel, and Related Materials (2001)

    Google Scholar 

  63. International Standard Organization ISO 1817:2005, Rubber, Vulcanized -Determination of the Effect of Liquids (2005)

    Google Scholar 

  64. European Standard EN 13073:2001(E), Footwear - Test Methods for Whole Shoe - Water Resistance (2001)

    Google Scholar 

  65. SATRA Technology Centre SATRA  PM47:1997, Water Vapour Permeability and Absorption (1997)

    Google Scholar 

  66. T. Bosch, A.M. Manich, A.J. Long, J. Soc. Leather Technol. Chem. 84(6), 263-265, 2000.

    Google Scholar 

  67. New England Tanners Club, Leather Facts, 3rd edn. 1994

    Google Scholar 

  68. European Standard EN 12784:1999(E), Footwear - Test Methods for Whole Shoe - Thermal Insulation (1999)

    Google Scholar 

  69. European Standard/International Standard Organizations EN ISO20346: 2004(E), Personal Protective Equipment - Protective Footwear (2004)

    Google Scholar 

  70. European Standard/International Standard Organizations EN ISO20347: 2004(E), Personal Protective Equipment - Occupational Footwear (2004)

    Google Scholar 

  71. European Standard EN 13832-1:2006, Footwear Protecting Against Chemicals. Part 1: Terminology and Test Methods (2006).

    Google Scholar 

  72. European Standard EN 13832-2:2006, Footwear Protecting Against Chemicals. Part 2: Requirements for Footwear Resistant to Chemicals Under Laboratory Conditions (2006).

    Google Scholar 

  73. European Standard EN 13832-3:2006, Footwear Protecting Against Chemicals. Part 3: Requirements for Footwear Highly Resistant to Chemicals Under Lab-oratory Conditions (2006)

    Google Scholar 

  74. http://www.shirleytech.com/pdf/micro-article- 300404.pdf

  75. Technical Report ISO TR 11220:1993(E), Footwear for Professional Use -Determination of Slip Resistance (1993)

    Google Scholar 

  76. European Standard EN13287:2004(E) Personal Protective Equipment-Footwear - Test Method for Slip Resistance (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Silva, R.M., Pinto, V.V., Freitas, F., Ferreira, M.J. (2007). Characterisation of Barrier Effects in Footwear. In: Duquesne, S., Magniez, C., Camino, G. (eds) Multifunctional Barriers for Flexible Structure. Materials Science, vol 97. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71920-5_13

Download citation

Publish with us

Policies and ethics