Advertisement

Spanning Trees and Arborescences

Part of the Algorithms and Combinatorics book series (AC, volume 21)

Abstract

Consider a telephone company that wants to rent a subset from an existing set of cables, each of which connects two cities. The rented cables should suffice to connect all cities and they should be as cheap as possible. It is natural to model the network by a graph: the vertices are the cities and the edges correspond to the cables. By Theorem 2.4 the minimal connected spanning subgraphs of a given graph are its spanning trees. So we look for a spanning tree of minimum weight, where we say that a subgraph T of a graph G with weights c : E(G) → ℝ has weight c(E(T))=∑ e∈E(T) c(e).

Keywords

Span Tree Undirected Graph Minimum Span Tree Minimum Weight Delaunay Triangulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

General Literature

  1. Ahuja, R.K., Magnanti, T.L., and Orlin, J.B. [1993]: Network Flows. Prentice-Hall, Englewood Cliffs 1993, Chapter 13Google Scholar
  2. Balakrishnan, V.K. [1995]: Network Optimization. Chapman and Hall, London 1995, Chapter 1zbMATHGoogle Scholar
  3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C. [2001]: Introduction to Algorithms. Second Edition. MIT Press, Cambridge 2001, Chapter 23Google Scholar
  4. Gondran, M., and Minoux, M. [1984]: Graphs and Algorithms. Wiley, Chichester 1984, Chapter 4zbMATHGoogle Scholar
  5. Magnanti, T.L., and Wolsey, L.A. [1995]: Optimal trees. In: Handbooks in Operations Research and Management Science; Volume 7: Network Models (M.O. Ball, T.L. Magnanti, C.L. Monma, G.L. Nemhauser, eds.), Elsevier, Amsterdam 1995, pp. 503–616Google Scholar
  6. Schrijver, A. [2003]: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin 2003, Chapters 50–53zbMATHGoogle Scholar
  7. Tarjan, R.E. [1983]: Data Structures and Network Algorithms. SIAM, Philadelphia 1983, Chapter 6Google Scholar
  8. Wu, B.Y., and Chao, K.-M. [2004]: Spanning Trees and Optimization Problems. Chapman & Hall/CRC, Boca Raton 2004zbMATHGoogle Scholar

Cited References

  1. Bock, F.C. [1971]: An algorithm to construct a minimum directed spanning tree in a directed network. In: Avi-Itzak, B. (Ed.): Developments in Operations Research. Gordon and Breach, New York 1971, 29–44Google Scholar
  2. Borůvka, O. [1926a]: O jistém problému minimálním. Práca Moravské Přírodovědecké Spolnečnosti 3 (1926), 37–58Google Scholar
  3. Borůvka, O. [1926b]: Příspevěk k řešení otázky ekonomické stavby. Elektrovodních sítí. Elektrotechnicky Obzor 15 (1926), 153–154Google Scholar
  4. Cayley, A. [1889]: A theorem on trees. Quarterly Journal on Mathematics 23 (1889), 376–378Google Scholar
  5. Chazelle, B. [2000]: A minimum spanning tree algorithm with inverse-Ackermann type complexity. Journal of the ACM 47 (2000), 1028–1047zbMATHCrossRefMathSciNetGoogle Scholar
  6. Cheriton, D., and Tarjan, R.E. [1976]: Finding minimum spanning trees. SIAM Journal on Computing 5 (1976), 724–742zbMATHCrossRefMathSciNetGoogle Scholar
  7. Chu, Y., and Liu, T. [1965]: On the shortest arborescence of a directed graph. Scientia Sinica 4 (1965), 1396–1400; Mathematical Review 33, # 1245Google Scholar
  8. Diestel, R. [1997]: Graph Theory. Springer, New York 1997zbMATHGoogle Scholar
  9. Dijkstra, E.W. [1959]: A note on two problems in connexion with graphs. Numerische Mathematik 1 (1959), 269–271zbMATHCrossRefMathSciNetGoogle Scholar
  10. Dixon, B., Rauch, M., and Tarjan, R.E. [1992]: Verification and sensitivity analysis of minimum spanning trees in linear time. SIAM Journal on Computing 21 (1992), 1184–1192zbMATHCrossRefMathSciNetGoogle Scholar
  11. Edmonds, J. [1967]: Optimum branchings. Journal of Research of the National Bureau of Standards B 71 (1967), 233–240zbMATHMathSciNetGoogle Scholar
  12. Edmonds, J. [1970]: Submodular functions, matroids and certain polyhedra. In: Combinatorial Structures and Their Applications; Proceedings of the Calgary International Conference on Combinatorial Structures and Their Applications 1969 (R. Guy, H. Hanani, N. Sauer, J. Schonheim, eds.), Gordon and Breach, New York 1970, pp. 69–87Google Scholar
  13. Edmonds, J. [1973]: Edge-disjoint branchings. In: Combinatorial Algorithms (R. Rustin, ed.), Algorithmic Press, New York 1973, pp. 91–96Google Scholar
  14. Fortune, S. [1987]: A sweepline algorithm for Voronoi diagrams. Algorithmica 2 (1987), 153–174zbMATHCrossRefMathSciNetGoogle Scholar
  15. Frank, A. [1978]: On disjoint trees and arborescences. In: Algebraic Methods in Graph Theory; Colloquia Mathematica; Soc. J. Bolyai 25 (L. Lovász, V.T. Sós, eds.), North-Holland, Amsterdam 1978, pp. 159–169Google Scholar
  16. Frank, A. [1979]: Covering branchings. Acta Scientiarum Mathematicarum (Szeged) 41 (1979), 77–82zbMATHGoogle Scholar
  17. Fredman, M.L., and Tarjan, R.E. [1987]: Fibonacci heaps and their uses in improved network optimization problems. Journal of the ACM 34 (1987), 596–615CrossRefMathSciNetGoogle Scholar
  18. Fredman, M.L., and Willard, D.E. [1994]: Trans-dichotomous algorithms for minimum spanning trees and shortest paths. Journal of Computer and System Sciences 48 (1994), 533–551zbMATHCrossRefMathSciNetGoogle Scholar
  19. Fulkerson, D.R. [1974]: Packing rooted directed cuts in a weighted directed graph. Mathematical Programming 6 (1974), 1–13zbMATHCrossRefMathSciNetGoogle Scholar
  20. Gabow, H.N. [1995]: A matroid approach to finding edge connectivity and packing arborescences. Journal of Computer and System Sciences 50 (1995), 259–273zbMATHCrossRefMathSciNetGoogle Scholar
  21. Gabow, H.N., Galil, Z., and Spencer, T. [1989]: Efficient implementation of graph algorithms using contraction. Journal of the ACM 36 (1989), 540–572CrossRefMathSciNetGoogle Scholar
  22. Gabow, H.N., Galil, Z., Spencer, T., and Tarjan, R.E. [1986]: Efficient algorithms for finding minimum spanning trees in undirected and directed graphs. Combinatorica 6 (1986), 109–122zbMATHCrossRefMathSciNetGoogle Scholar
  23. Gabow, H.N., and Manu, K.S. [1998]: Packing algorithms for arborescences (and spanning trees) in capacitated graphs. Mathematical Programming B 82 (1998), 83–109MathSciNetGoogle Scholar
  24. Jarník, V. [1930]: O jistém problému minimálním. Práca Moravské Přírodovědecké Společnosti 6 (1930), 57–63Google Scholar
  25. Karger, D., Klein, P.N., and Tarjan, R.E. [1995]: A randomized linear-time algorithm to find minimum spanning trees. Journal of the ACM 42 (1995), 321–328zbMATHCrossRefMathSciNetGoogle Scholar
  26. Karp, R.M. [1972]: A simple derivation of Edmonds’ algorithm for optimum branchings. Networks 1 (1972), 265–272zbMATHCrossRefMathSciNetGoogle Scholar
  27. King, V. [1995]: A simpler minimum spanning tree verification algorithm. Algorithmica 18 (1997), 263–270CrossRefGoogle Scholar
  28. Knuth, D.E. [1992]: Axioms and hulls; LNCS 606. Springer, Berlin 1992zbMATHGoogle Scholar
  29. Korte, B., and Nešetřil, J. [2001]: Vojtěch Jarník’s work in combinatorial optimization. Discrete Mathematics 235 (2001), 1–17zbMATHCrossRefMathSciNetGoogle Scholar
  30. Kruskal, J.B. [1956]: On the shortest spanning subtree of a graph and the travelling salesman problem. Proceedings of the AMS 7 (1956), 48–50CrossRefMathSciNetGoogle Scholar
  31. Lovász, L. [1976]: On two minimax theorems in graph. Journal of Combinatorial Theory B 21 (1976), 96–103zbMATHCrossRefGoogle Scholar
  32. Nash-Williams, C.S.J.A. [1961]: Edge-disjoint spanning trees of finite graphs. Journal of the London Mathematical Society 36 (1961), 445–450zbMATHCrossRefMathSciNetGoogle Scholar
  33. Nash-Williams, C.S.J.A. [1964]: Decompositions of finite graphs into forests. Journal of the London Mathematical Society 39 (1964), 12CrossRefMathSciNetGoogle Scholar
  34. Nešetřil, J., Milková, E., and Nešetřilová, H. [2001]: Otakar Borůvka on minimum spanning tree problem. Translation of both the 1926 papers, comments, history. Discrete Mathematics 233 (2001), 3–36CrossRefMathSciNetGoogle Scholar
  35. Prim, R.C. [1957]: Shortest connection networks and some generalizations. Bell System Technical Journal 36 (1957), 1389–1401Google Scholar
  36. Prüfer, H. [1918]: Neuer Beweis eines Satzes über Permutationen. Arch. Math. Phys. 27 (1918), 742–744Google Scholar
  37. Shamos, M.I., and Hoey, D. [1975]: Closest-point problems. Proceedings of the 16th Annual IEEE Symposium on Foundations of Computer Science (1975), 151–162Google Scholar
  38. Tarjan, R.E. [1975]: Efficiency of a good but not linear set union algorithm. Journal of the ACM 22 (1975), 215–225zbMATHCrossRefMathSciNetGoogle Scholar
  39. Tutte, W.T. [1961]: On the problem of decomposing a graph into n connected factor. Journal of the London Mathematical Society 36 (1961), 221–230zbMATHCrossRefMathSciNetGoogle Scholar
  40. Zhou, H., Shenoy, N., and Nicholls, W. [2002]: Efficient minimum spanning tree construction without Delaunay triangulation. Information Processing Letters 81 (2002), 271–276zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Personalised recommendations