Skip to main content

Tropical Forests. V. Mangroves

  • Chapter
  • 1658 Accesses

Abstract

Mangroves are a characteristic and important type of tropical and subtropical forests, with a unique capacity to tolerate large short-term changes of salinity. The name comes from the Spanish “mangle” for Rhizophora, a mangrove genus, and the English “grove”. Mangroves may also be considered as “tide-forests”, since their ecology is determined primarily by the tides at the three typical sites where they occur (Fig. 7.1):

• coastal mangroves,

• estuarine mangroves and

• coral mangroves, i.e. mangroves along the coastlines, in river estuaries and around coral reefs and coral islands.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiga I, Nakano Y, Ohki ST, Kitaya Y, Yabuki K (1995) Photosynthetic CO2 fixation in pneumatophores of grey mangrove, Avicennia marina. Environ Control Biol 33:97–101

    Google Scholar 

  • Alongi DM (1994) Zonation and seasonality of benthic primary production and community respiration in tropical mangrove forests. Oecologia 98:320–327

    Google Scholar 

  • Alongi DM, Clough BF, Dixon P, Tirendi F (2003) Nutrient partitioning and storage in arid-zone forests of the mangroves Rhizophora stylosa and Avicennia marina. Trees 17:51–60

    CAS  Google Scholar 

  • Atkinson MR, Findlay GP, Hope AB, Pitman MG, Saddler HDW, West KR (1967) Salt regulation in the mangroves Rhizophora mucronata Lam. and Aegialitis annulata R.Br. Aust J Biol Sci 20:589–599

    CAS  Google Scholar 

  • Ball MC (1986) Photosynthesis in mangroves. Wetlands (Aust) 6:12–22

    Google Scholar 

  • Ball MC (1996) Comparative ecophysiology of mangrove forest and tropical lowland moist rainforest. In: Mulkey SS, Chazdon RL, Smith AP (eds) Tropical forest plant ecophysiology. Chapman and Hall, New York, pp 461–496

    Google Scholar 

  • Ball MC (2002) Interactive effects of salinity and irradiance on growth: implications for mangrove forest structure along salinity gradients. Trees 16:126–139

    Google Scholar 

  • Ball MC, Anderson JM (1986) Sensitivity of photosytem II to NaCl in relation to salinity tolerance. Comparative studies with thylakoids of the salt-tolerant mangrove, Avicennia marina, and the salt-sensitive pea, Pisum sativum. Aus J Plant Physiol 13:689–698

    CAS  Google Scholar 

  • Ball MC, Farquhar GD (1984a) Photosynthetic and stomatal responses of two mangrove species, Aegiceras corniculatum and Avicennia marina, to long term salinity and humidity conditions. Plant Physiol 74:1–6

    PubMed  Google Scholar 

  • Ball MC, Farquhar GD (1984b) Photosynthetic and stomatal responses of the grey mangrove, Avicennia marina, to transient salinity conditions. Plant Physiol 74:7–11

    PubMed  Google Scholar 

  • Ball MC, Cochrane MJ, Rawson HM (1997) Growth and water use of the mangroves, Rhizophora apiculata and R. stylosa, in response to salinity and humidity under ambient and elevated concentration of atmospheric CO2. Plant Cell Environ 20:1158–1166

    Google Scholar 

  • Becker P, Asmat A, Mohamed J, Moksin M, Tyree MT (1997) Sap flow rates of mangrove trees are not unusually low. Trees 11:432–435

    Google Scholar 

  • Biebl R (1962) Protoplasmatisch-ökologische Untersuchungen an Mangrovenalgen von Puerto Rico. Protoplasma 55:572–606

    CAS  Google Scholar 

  • Biebl R, Kinzel H (1965) Blattbau und Salzgehalt von Laguncularia racemosa (L) Gaertn. f. und anderer Mangrovebäume auf Puerto Rico. Österr Bot Z 112:56–93

    CAS  Google Scholar 

  • Björkman O, Demmig B, Andrews TJ (1988) Mangrove photosynthesis: response to high-irradiance stress: Aust J Plant Physiol 15:43–61

    Google Scholar 

  • Black CC (1973) Photosynthetic carbon fixation in relation to net CO2 uptake. Annu Rev Plant Physiol 24:253–286

    CAS  Google Scholar 

  • Cheeseman JM (1994) Depressions of photosynthesis in mangrove species. In: Baker NR, Bowyer JR (eds) Photoinhibition of photosynthesis. From molecular mechanisms to the field. Bios Scientific Publishers, Oxford, pp 379–391

    Google Scholar 

  • Cheeseman JM, Lovelock CE (2004) Photosynthetic characteristics of dwarf and fringe Rhizophora mangle L. in a Belizean mangrove. Plant Cell Environ 27:769–780

    Google Scholar 

  • Cheeseman JM, Clough BF, Carter DR, Lovelock CE, Eong OJ, Sim RG (1991) The analysis of photosynthetic performance in leaves under field conditions – a case study using Bruguiera mangroves. Photosyn Res 29:11–22

    CAS  Google Scholar 

  • Cheeseman JM, Herendeen LB, Cheeseman AT, Clough BF (1997) Photosynthesis and photoprotection in mangroves under field conditions. Plant Cell Environ 20:579–588

    CAS  Google Scholar 

  • Chiu C-Y, Chou C-H (1993) Oxidation in the rhizosphere of mangrove Kandelia candel seedlings. Soil Sci Plant Nutr 39:725–731

    CAS  Google Scholar 

  • Christian R (2005) Interactive effects of salinity and irradiance on photoprotection in acclimated seedlings of two sympatric mangroves. Trees 19:596–606

    CAS  Google Scholar 

  • Clarke PJ, Kerrigan RA, Westphal CJ (2001) Dispersal potential and early growth in 14 tropical mangroves: do early life history traits correlate with patterns of adult distribution? J Ecol 89:648–659

    Google Scholar 

  • Clough BF, Sim RG (1989) Changes in gas exchange characteristics and water use efficiency of mangroves in response to salinity and vapour pressure deficit. Oecologia 79:38–44

    Google Scholar 

  • Cram WJ, Torr PG, Rose DA (2002) Salt allocation during leaf development and leaf fall in mangroves. Trees 16:112–119

    CAS  Google Scholar 

  • Curran M (1985) Gas movements in the roots of Avicennia marina (Forsk.) Vierh. Aust J Plant Physiol 12:97–108

    Google Scholar 

  • Ellison AM (2002) Macroecology of mangroves: large-scale patterns and processes in tropical coastal forests. Trees 16:181–194

    Google Scholar 

  • Fahn A, Shimony C (1977) Development of the glandular and non-glandular leaf hairs of Avicennia marina (Forsskål) Vierh. Bot J Linn Soc 74:34–46

    Google Scholar 

  • Fitzgerald MA, Allaway WG (1991) Apoplastic and symplastic pathways in the leaf of the grey mangrove Avicennia marina (Forssk.) Vierh. New Phytol 119:217–226

    Google Scholar 

  • Hussain MI, Khoja TM (1993) Intertidal and subtidal blue-green-algal mats of open and mangrove areas in the Farasan Archipelago (Saudi Arabia), Red Sea. Bot Mar 36:377–388

    Google Scholar 

  • Janssonius HH (1950) The vessels in the wood of Javan mangrove trees. Blumea 6:465–469

    Google Scholar 

  • Junghans U, Polle A, Düchting P, Weiler E, Kuhlman B, Gruber F, Teichmann T (2006) Adaptation to high salinity in poplar involves changes in xylem anatomy and auxin physiology. Plant Cell Environ 29:1519–1531

    PubMed  CAS  Google Scholar 

  • Kao W-Y, Tsai H-C, Tsai T-T (2001) Effect of NaCl and nitrogen availability on growth and photosynthesis of seedlings of a mangrove species, Kadelia candel (L.) Druce. J Plant Physiol 158:841–846

    CAS  Google Scholar 

  • Karsten U (1995) Mangrovenalgen. Biol in unserer Zeit 25:51–58

    Google Scholar 

  • Karsten U (1996) Growth and organic osmolytes of geographically different isolates of Microcoleus chthonoplastes (cyanobacteria) from benthic microbial mats: response to salinity change. J Phycol 32:501–506

    CAS  Google Scholar 

  • Karsten U, West JA (1993) Ecophysiological studies on six species of the mangrove red algal genus Caloglossa. Aust J Plant Physiol 20:729–739

    Google Scholar 

  • Karsten U, Koch S, West JA, Kirst GO (1994) The intertidal red alga Bostrychia simpliciuscula Harvey ex J. Agardh from a mangrove swamp in Singapore: acclimation to light and salinity. Aquatic Bot 48:313–323

    Google Scholar 

  • Karsten U, Barrow KD, Mostaert AS, King RJ (1995a) The osmotic significance of the heteroside floridoside in the mangrove alga Catenella nipae (Rhodophyta: Gigartinales) in Eastern Australia. Estuarine Coastal Shelf Sci 40:239–247

    CAS  Google Scholar 

  • Karsten U, Bock C, West JA (1995b) Low molecular weight carbohydrate patterns in geographically different isolates of the eulittoral red alga Bostrychia tenuisissima from Australia. Bot Acta 108:321–326

    CAS  Google Scholar 

  • Karsten U, Barrow KD, Nixdorf O, West JA, King RJ (1997a) Characterization of mannitol metabolism in the mangrove red alga Caloglossa leprieurii (Montagne) J. Agardh. Planta 201:173–178

    CAS  Google Scholar 

  • Karsten U, Barrow KD, West JA, King RJ (1997b) Mannitol metabolism in the intertidal mangrove red alga Caloglossa leprieurii: salinity effects on enzymatic activity. Phycologia 36:150–156

    Google Scholar 

  • Karsten U, Maier J, Garcia-Pichel F (1998) Seasonality in UV-absorbing compounds of cyanobacterial mat communities from an intertidal mangrove flat. Aquatic Microbial Ecol 16:37–44

    Google Scholar 

  • Kinzel H (1982) Pflanzenökologie und Mineralstoffwechsel. Ulmer, Stuttgart, pp 376–382

    Google Scholar 

  • Kitao M, Utsugi H, Kuramoto S, Tabuchi R, Fujimoto K, Lihpai S (2003) Light-dependent photosynthetic characteristics indicated by fluorescence in five mangrove species native to Pohnpei Island, Micronesia. Physiol Plant 117:376–382

    PubMed  CAS  Google Scholar 

  • Kitaya Y, Sumiyoshi M, Kawabata Y, Monji N (2002) Effect of submergence and shading of hypocotyls on leaf conductance in young seedlings of the mangrove Rhizophora stylosa. Trees 16:147–149

    CAS  Google Scholar 

  • Lear R, Turner T (1977): Mangroves of Australia. University of Queensland Press, St Lucia

    Google Scholar 

  • Li X-P, Ong B-L (1998) Responses of photosynthesis to NaCl in gametophytes of Acrostichum aureum. Physiol Plant 102:119–127

    CAS  Google Scholar 

  • Lin G, Sternberg L da SL (1992a) Effect of growth form, salinity, nutrient and sulfide on photosynthesis, carbon isotope discrimination and growth of red mangrove (Rhizophora mangle L.). Aust J Plant Physiol 19:509–517

    CAS  Google Scholar 

  • Lin G, Sternberg L da SL (1992b) Comparative study of water uptake and photosynthetic gas exchange between scrub and fringe red mangroves Rhizophora mangle L. Oecologia 90:399–403

    Google Scholar 

  • Lin G, Sternberg L da SL (1993) Effects of salinity fluctuation on photosynthetic gas exchange and plant growth of the red mangrove (Rhizophora mangle L.). J Exp Bot 44:9–16

    Google Scholar 

  • López-Portillo J, Ewers FW, Angeles G (2005) Sap salinity effects on xylem conductivity in two mangrove species. Plant Cell Environ 28:1285–1292

    Google Scholar 

  • Lösch R (1998) Plant water relations. Progr Bot 60:193–233

    Google Scholar 

  • Lösch R, Busch J (1999) Plant functioning under waterlogged conditions. Progr Bot 61:255–268

    Google Scholar 

  • Lovelock CF, Clough BF (1992) Influence of solar radiation and leaf angle on leaf xanthophyll concentrations in mangroves. Oecologia 91:518–525

    Google Scholar 

  • Lovelock CE, Ball MC, Choat B, Engelbrecht BMJ, Holbrook NM, Feller IC (2006a) Linking physiological processes with mangrove forest structure: phosphorus deficiency limits canopy development, hydraulic conductivity and photosynthetic carbon gain in dwarf Rhizophora mangle. Plant Cell Environ 29:793–802

    PubMed  CAS  Google Scholar 

  • Lovelock CE, Ball MC, Feller IC, Engelbrecht BMJ, Ewe ML (2006b) Variation in hydraulic conductivity of mangroves: influence of species, salinity, and nitrogen and phosphorus availability. Physiol Plant 127:457–464

    CAS  Google Scholar 

  • Lovelock CE, Feller IC, Ball MC, Engelbrecht BMJ, Ewe ML (2006c) Differences in plant function in phosphorus- and nitrogen-limited mangrove ecosystems. New Phytol 172:514–522

    PubMed  CAS  Google Scholar 

  • Lüttge U (1975) Salt glands. In: Baker DA, Hall JL (eds) Ion transport in plant cells and tissues. North-Holland Publishing, Amsterdam, pp 335–376

    Google Scholar 

  • Lüttge U (2002) Mangroves. In: Läuchli A, Lüttge U (eds) Salinity: environment – plants – molecules. Kluwer, Dordrecht, pp 113–135

    Google Scholar 

  • Medina E, Cuevas E, Popp M, Lugo AE (1990) Soil salinity, sun exposure, and growth of Acrostichum aureum, the mangrove fern. Bot Gaz 151:41–49

    Google Scholar 

  • Mfilinge PL, Atta N, Tsuchiya M (2002) Nutrient dynamics and leaf litter decomposition in a subtropical mangrove forest at Oura Bay, Okinawa, Japan. Trees 16:172–180

    CAS  Google Scholar 

  • Naidoo G, Tuffers AV, Willert DJ von (2002) Changes in gas exchange and chlorophyll fluorescence characteristics of two mangroves and a mangrove associate in response to salinity in the natural environment. Trees 16:140–146

    CAS  Google Scholar 

  • Ochieng CA, Erftemeijer PLA (2002) Phenology, litterfall and nutrient resorption in Avicennia marina (Forssk.) Vierh. in Gazi Bay, Kenya. Trees 16:167–171

    CAS  Google Scholar 

  • Oo NW (2002) Present state and problems of mangrove management in Myanmar. Trees 16:218–223

    Google Scholar 

  • Orthen B, Popp M, Smirnoff N (1994) Hydroxyl radical scavenging properties of cyclitols. Proc R Soc Edinburgh Biol Sci 102:267–272

    Google Scholar 

  • Parida AK, Das AB (2004) Effects of NaCl stress on nitrogen and phosphorus metabolism in a true mangrove Bruguiera parviflora grown under hydroponic culture. J Plant Physiol 161:921–928

    PubMed  CAS  Google Scholar 

  • Parida AK, Das AB, Mittra B (2004a) Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees 18:167–174

    CAS  Google Scholar 

  • Parida AK, Das AB, Mohanty P (2004b) Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes. J Plant Physiol 161:531–542

    PubMed  CAS  Google Scholar 

  • Passioura JB, Ball MC, Knight JH (1992) Mangroves may salinize the soil and in so doing limit their transpiration rate. Funct Ecol 6:476–481

    Google Scholar 

  • Polanía J (1990) Anatomische und physiologische Anpassungen von Mangroven. Dissertation, Vienna

    Google Scholar 

  • Popp M (1984) Chemical composition of Australian mangroves. II. Low molecular weight carbohydrates. Z Pflanzenphysiol 113:411–421

    CAS  Google Scholar 

  • Popp M (1991) Mangroven – Wälder der Gezeitenzone in den Tropen und Subtropen. Praxis Naturw 40:16–22

    Google Scholar 

  • Popp M, Polanía J (1989) Compatible solutes in different organs of mangrove trees. Ann Sci For 46:842s–844s

    Google Scholar 

  • Popp M, Larher F, Weigel P (1984) Chemical comparison of Australian mangroves. III. Free amino acids, total methylated onium compounds and total nitrogen. Z Pflanzenphysiol 114:15–25

    CAS  Google Scholar 

  • Popp M, Polanía J, Weiper M (1993) Physiological adaptations to different salinity levels in mangrove. In: Lieth H, Al Masoom A (eds) Towards the rational use of high salinity tolerant plants, vol 1. Kluwer, Dordrecht, pp 217–224

    Google Scholar 

  • Post E (1963) Zur Verbreitung und Ökologie der Bostrychia-Caloglossa-Assoziation. Inter Rev Ges Hydrobiol 48:47–152

    Google Scholar 

  • Richter A, Thonke B, Popp M (1990) 1S-1O-Methylmucoinositol in Viscum album and members of the Rhizophoraceae. Phytochemistry 29:1785–1786

    CAS  Google Scholar 

  • Scholander PF (1968) How mangroves desalinate sea water. Physiol Plant 21:251–261

    CAS  Google Scholar 

  • Scholander PF, Hammel HT, Bradstreet ED, Hemmingsen EA (1965) Sap pressure in vascular plants. Science 148:339–346

    PubMed  Google Scholar 

  • Scholander PF, Bradstreet ED, Hammel HT, Hemmingsen EA (1966) Sap concentrations in halophytes and some other plants. Plant Physiol 41:529–532

    PubMed  CAS  Google Scholar 

  • Sengupta A, Chaudhuri A (1991) Ecology of heterotrophic dinitrogen fixation in the rhizosphere of mangrove plant community at the Ganges River estuary in India. Oecologia 87:560–564

    Google Scholar 

  • Skelton NJ, Allaway WG (1996) Oxygen and pressure changes measured in situ during flooding in roots of the grey mangrove Avicennia marina (Forsk.) Vierh. Aquat Bot 54:165–175

    Google Scholar 

  • Smith JAC, Popp M, Lüttge U, Cram WJ, Diaz M, Griffiths H, Lee HSJ, Medina E, Schäfer C, Stimmel K-H, Thonke B (1989) Ecophysiology of xerophytic and halophytic vegetation of a coastal alluvial plain in northern Venezuela. VI. Water relations and gas exchange of mangroves. New Phytol 111:293–307

    Google Scholar 

  • Sobrado MA (1999) Drought effects on photosynthesis of the mangrove, Avicennia germinans, under contrasting salinities. Trees 13:125–130

    Google Scholar 

  • Sobrado MA (2000) Relation of water transport to leaf gas exchange properties in three mangrove species. Trees 14:258–262

    Google Scholar 

  • Sobrado MA (2001) Hydraulic properties of a mangrove Avicennia germinans as affected by NaCl. Biol Plant 44:435–438

    Google Scholar 

  • Sobrado MA (2002) Effect of drought on leaf gland secretion of the mangrove Avicennia germinans L. Trees 16:1–4

    CAS  Google Scholar 

  • Sobrado MA (2004) Influence of external salinity on the osmolality of xylem sap, leaf tissue and leaf gland secretion of the mangrove Laguncularia racemosa (L.) Gaertn. Trees 18:422–427

    Google Scholar 

  • Sobrado MA, Ball MC (1999) Light use in relation to carbon gain in the mangrove, Avicennia marina, under hypersaline conditions. Aust J Plant Physiol 26:245–251

    CAS  Google Scholar 

  • Sommer C, Thonke B, Popp M (1990) The compatibility of D-pinitol and 1D-1-O-methylmucoinositol with malate dehydrogenase activity. Bot Acta 103:270–273

    CAS  Google Scholar 

  • Springer (2002) Trees: structure and function, vol 16, no 2/3. Special issue. Mangroves. Springer, Berlin Heidelberg New York, pp 63–243

    Google Scholar 

  • Suárez N, Medina E (2005) Salinity effect on plant growth and leaf demography of the mangrove Avicennia germinans L. Trees 19:721–727

    Google Scholar 

  • Sun WQ, Li X-P, Ong B-L (1999) Preferential accumulation of D-pinitol in Acrostichum aureum gametophytes in response to salt stress. Physiol Plant 105:51–57

    CAS  Google Scholar 

  • Takemura T, Hanagata N, Dubinsky Z, Karube I (2002) Molecular characterization and response to salt stress of mRNAs encoding cytosolic Cu/Zn superoxide dismutase and catalase from Bruguiera gymnorrhiza. Trees 16:94–99

    CAS  Google Scholar 

  • Twilley RR, Chen R, Hargis T (1992) Carbon sinks in mangroves and their implication to carbon budget of tropical ecosystems. Water Air Soil Pollut 64:265–288

    CAS  Google Scholar 

  • Tyree MT (1997) The cohesion-tension theory of sap ascent: current controversies. J Exp Bot 48:1753–1765

    CAS  Google Scholar 

  • Vareschi V (1980) Vegetationsökologie der Tropen. Ulmer, Stuttgart

    Google Scholar 

  • Verheyden A, Helle G, Schleser GH, Dehairs F, Beeckman H, Koedam N (2004) Annual cyclicity in high-resolution stable carbon and oxygen isotope ratios in the wood of the mangrove tree Rhizophora mucronata. Plant Cell Environ 27:1525–1536

    Google Scholar 

  • Verheyden A, de Ridder F, Schmitz N, Beeckman H, Koedam N (2005) High-resolution time series of vessel density in Kenyan mangrove trees reveal a link with climate. New Phytol 167:425–435

    PubMed  Google Scholar 

  • Wei C, Steudle E, Tyree MT (1999a) Water ascent in plants: do ongoing controversies have a sound basis. Trends Plant Sci 4:372–375

    PubMed  Google Scholar 

  • Wei C, Tyree MT, Steudle E (1999b) Direct measurement of xylem pressure in leaves of intact maize plants. A test of the cohesion-tension theory taking hydraulic architecture into consideration. Plant Physiol 121:1191–1205

    PubMed  CAS  Google Scholar 

  • Yáñez-Espinoza L, Terrazas T, López-Mata L (2001) Effects of flooding on wood and bark anatomy of four species in a mangrove forest community. Trees 15:91–97

    Google Scholar 

  • Yates EJ, Ashwath N, Midmore DJ (2002) Responses to nitrogen, phosphorus, potassium and sodium chloride by three mangrove species in pot culture. Trees 16:120–125

    CAS  Google Scholar 

  • Youssef T, Saenger P (1996) Anatomical adaptive strategies to flooding and rhizosphere oxidation in mangrove seedlings. Aust J Bot 44:297–313

    Google Scholar 

  • Zimmermann U, Zhu JJ, Meinzer FC, Goldstein G, Scheider H, Zimmermann G, Benkert R, Thürmer F, Melcher P, Webb D, Haase A (1994a) High molecular weight organic compounds in the xylem sap of mangroves: implications for long-distance water transport. Bot Acta 107:218–229

    CAS  Google Scholar 

  • Zimmermann U, Meinzer FC, Benkert R, Zhu JJ, Schneider H, Goldstein G, Kuchenbrod E, Haase A (1994b) Xylem water transport: is the available evidence consistent with the cohesion theory? Plant Cell Environ 17:1169–1181

    Google Scholar 

  • Zimmermann U, Wagner H-J, Heidecker M, Mimietz S, Schneider H, Szimtenings M, Haase A, Mitlöhner R, Kruck W, Hoffmann R, König W (2002) Implications of mucilage on pressure bomb measurements and water lifting in trees rooting in high-salinity water. Trees 16:100–111

    Google Scholar 

  • Zuberer DA, Silver WS (1978) Biological dinitrogen fixation (acetylene reduction) associated with Florida mangroves. Appl Environ Microbiol 35:567–575

    PubMed  CAS  Google Scholar 

  • Zuberer DA, Silver WS (1979) Nitrogen fixation (acetylene reduction) and the microbial colonization of mangrove roots. New Phytol 82:467–472

    CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Tropical Forests. V. Mangroves. In: Physiological Ecology of Tropical Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71793-5_7

Download citation

Publish with us

Policies and ethics