Skip to main content

Large-Scale Sensing and Diagnosis in Relation to the Tropical Environment

  • Chapter
  • 1550 Accesses

Abstract

In the discussion of “global change” it has become increasingly important to develop means allowing large-scale conclusions about the conditions and the behaviour of ecosystems or biomes. Indeed, techniques for examination and detailed structural analysis of the surface of our globe are continuously advanced, allowing the integration of observations in space and time. This is, of course, applicable throughout the globe. However, it is particularly relevant for the tropical environment, with extended tracts of ecosystems like savannas and forests (see Sect. 1.3), which are often difficult to penetrate on the ground.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams MA, Grierson PF (2001) Stable isotopes at natural abundance in terrestrial plant ecology and ecophysiology: an update. Plant Biol 3:299–310

    Article  CAS  Google Scholar 

  • Asner GP, Vitousek PM (2005) Remote analysis of biological invasion and biogeochemical change. Proc Nat Acad Sci USA 102:4383–4386

    Article  PubMed  CAS  Google Scholar 

  • Asner GP, Nepstad D, Cardinot G, Ray D (2004) Drought stress and carbon uptake in an Amazon forest measured with spaceborne imaging spectroscopy. Proc Nat Acad Sci USA 101:6039–6044

    Article  PubMed  CAS  Google Scholar 

  • Broadmeadow MSJ, Griffiths H, Maxwell C, Borland A (1992) The carbon isotope ratio of plant organic material reflects temporal and spatial variations in CO2 within tropical forest formations in Trinidad. Oecologia 89:435–441

    Google Scholar 

  • Buchmann N, Bonal D, Barigah TS, Guehl J-M, Ehleringer JR (2004) Insights into the carbon dynamics of tropical primary rainforests using stable carbon isotope analyses. In Gourlet-Fleury S, Guehl J-M, Laroussinie O, eds, Ecology and management of a neotropical rainforest. pp 95–113, Elsevier, Amsterdam

    Google Scholar 

  • Chapelle EW, Wood FM, McMurtrey JE, Newcomb WW (1984a) Laser-induced fluorescence in green plants: 1. A technique for the remote detection of plant stress and species differentiation. Appl Opt 23:134–138

    Article  Google Scholar 

  • Chapelle EW, McMurtrey JE, Wood FM, Newcomb WW (1984b) Laser-induced fluorescence of green plants. 2. LIF caused by nutrient deficiencies in corn. App Opt 23:139–142

    Google Scholar 

  • Cramer F (1993) Chaos and order. The complex structure of living systems. VCH, Weinheim

    Google Scholar 

  • Ehleringer JR (1993) Variation in leaf carbon isotope discrimination in Encelia farinosa: implications for growth, competition, and drought survival. Oecologia 95:340–346

    Article  Google Scholar 

  • Ehleringer JR, Rundel PW (1989) Stable isotopes: history, units, and intrumentation. In: Rundel PW, Ehleringer JR, Nagy KA (eds), Stable isotopes in ecological research. Ecological studies, vol 68. Springer, Berlin Heidelberg New York, pp 1–19

    Google Scholar 

  • Ehrendorfer F (1991) Geobotanik. In: Sitte P, Ziegler H, Ehrendorfer F, Bresinsky A (eds) Strasburger Lehrbuch der Botanik. G Fischer, Stuttgart

    Google Scholar 

  • Evans RD (2001) Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci 16:121–126

    Article  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989a) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  CAS  Google Scholar 

  • Farquhar GD, Hubick KT, Condon AG, Richards RA (1989b) Carbon isotope fractionation and plant water-use efficiency. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable isotopes in ecological research. Ecological studies, vol 68. Springer, Berlin Heidelberg New York, pp 21–40

    Google Scholar 

  • Gates M (1965) Energy, plants and ecology. Ecology 46:1–14

    Article  Google Scholar 

  • Gehrig HH, Gaußmann O, Marx H, Schwarzott D, Kluge M (2001) Molecular phylogeny of the genus Kalanchoë (Crassulaceae) inferred from nucleotide sequences of the IST-1 and IST-2 regions. Plant Sci 160:827–835

    Article  PubMed  CAS  Google Scholar 

  • Ghashghaie J, Duranceau M, Badeck F-W, Cornic C, Adeline M-T, Deleens E (2001) Δ 13C of CO2 respired in the dark in relation to Δ 13C of leaf metabolites: comparison between Nicotiana sylvestris and Helianthus annuus under drought. Plant Cell Environ 24:505–515

    Article  CAS  Google Scholar 

  • Gosz JR, Dahm CN, Risser PG (1988) Long-path FTIR measurement of atmospheric trace gas concentrations. Ecology 69:1326–1330

    Article  CAS  Google Scholar 

  • Graustein WC (1989) 87Sr/86Sr ratios measure the sources and flow of strontium in terrestrial ecosystems. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable isotopes in ecological research. Ecological studies, vol 68. Springer, Berlin Heidelberg New York, pp 491–512

    Google Scholar 

  • Grime JP, Mackey JML, Hillier SH, Read DJ (1987) Floristic diversity in a model system using experimental microsoms. Nature 328:420–422

    Article  Google Scholar 

  • Guehl J-M, Bonal D, Ferhi A, Barigah TS, Farquhar G, Granier A (2004) Community-level diversity of carbon-water relations in rainforest trees. In Gourlet-Fleury S, Guehl J-M, Laroussinie O, eds, Ecology and management of a neotropical rainforest. pp 75–94. Elsevier-Amsterdam

    Google Scholar 

  • Hák R, Lichtenthaler HK, Rinderle U (1990) Decrease of the chlorophyll fluorescence ratio F690/F730 during greening and development of leaves. Radiat Environ Biophys 29:329–336

    Article  PubMed  Google Scholar 

  • Hastings A, Hom CL, Ellner S, Turchin P, Godfray HCJ (1993) Chaos in ecology: is mother nature a strange attractor? Annu Rev Ecol Syst 24:1–33

    Google Scholar 

  • Hobbs RJ, Mooney HA (eds) (1990) Remote sensing of biosphere functioning. Ecological studies, vol 79. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hoge FE, Swift RN, Yungel JK (1983) Feasibility of airborne detection of laser-induced fluorescence emissions from green terrestrial plants. Appl Opt 22:2991–3000

    CAS  PubMed  Google Scholar 

  • Holtum JAM, Winter K (2005) Carbon isotope composition of canopy leaves in a tropical forest in Panama throughout a seasonal cycle. Trees 19:545–551

    Article  CAS  Google Scholar 

  • Hübinger B, Doerner R, Martienssen W (1993) Local control of chaotic motion. Z Physik B 90:103–106

    Article  Google Scholar 

  • Humboldt, A von (2004) Kosmos. Entwurf einer physischen Weltbeschreibung. Ette O, Lubrich O, eds, Eichborn Verlag, Frankfurt M

    Google Scholar 

  • Hütt M-T (2001) Datenanalyse in der Biologie. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hütt M-T, Lüttge U (2002) Non-linear dynamics as a tool for data analysis and modeling in plant physiology. Plant Biol 4:281–297

    Article  Google Scholar 

  • Hütt M-T, Lüttge U (2005) Network dynamics in plant biology: current progress in historical perspective. Progr Bot 66:277–310

    Article  Google Scholar 

  • Jones PD (1990) Le climat des mille dernières années. Recherche 21:304–312

    Google Scholar 

  • Kluge M, Brulfert J, Ravelomana D, Lipp J, Ziegler H (1991) Crassulacean acid metabolism in Kalanchoë species collected in various climatic zones of Madagascar: a survey by Δ 13C analysis. Oecologia 88:407–414

    Article  Google Scholar 

  • Kluge M, Razanoelisoa B, Brulfert J (2001) Implications of genotypic diversity and phenotypic plasticity in the ecophysiological success of CAM plants, examined by studies on the vegetation of Madagascar. Plant Biol 3:214–222

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Hák R, Rinderle U (1990) The chlorophyll fluorescence ratio F690/F730 in leaves of different chlorophyll content. Photosynth Res 25:295–298

    Article  CAS  Google Scholar 

  • Linsenmair KE (1995) Biologische Vielfalt und ökologische Stabilität. In: Markl H, Geiler G, Großmann S, Oesterhelt D, Schmidbaur H, Quadbeck-Seeger HJ, Truscheit E (eds) Wissenschaft in der globalen Herausforderung. Verh Ges Dtsch Naturforsch Ärzte, 118 Vers Hamburg, Wiss Verlagsgesellschaft, Stuttgart, pp 267–295

    Google Scholar 

  • Lloyd AL, Lloyd D (1995) Chaos. Its significance and detection in biology. Biological Rhythm Res 26:233–252

    Google Scholar 

  • Máguas C, Griffiths H (2002) Applications of stable isotopes in plant ecology. Progr Bot 64:472–505

    Google Scholar 

  • Malingreau J-P, Tucker CJ (1987) La végétation vue de l’espace. Recherche 18:180–189

    Google Scholar 

  • Martinelli LK, Piccolo MC, Townsend AR, Vitousek PM, Cuevas E, McDowell W, Robertson GP, Santos OC, Treseder K (1999) Nitrogen stable isotope composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46:45–65

    CAS  Google Scholar 

  • Matson PA, Harriss RC (1988) Prospects for aircraft-based gas exchange measurements in ecosystem studies. Ecology 69. Ecol Soc of Am, Washington, DC (5), 1318–1325

    Google Scholar 

  • Matson PA, Vitousek PM (1990) Remote sensing and trace gas fluxes. In: Mooney HA, Hobbs RJ (eds) Remote sensing of biosphere functioning. Springer, Berlin Heidelberg New York, pp 157–167

    Google Scholar 

  • May RM (1976) Simple mathematical models with very complicated dynamics. Nature 261:459–467

    Article  PubMed  CAS  Google Scholar 

  • Medina E (1982) Physiological ecology of neotropical savanna plants. In: Huntley BJ, Walker BH (eds) Ecology of Tropical Savannas, Ecological Studies, vol 42. Springer, Berlin Heidelberg New York, pp 308–335

    Google Scholar 

  • Medina E, Montest G, Cuevas E, Roksandic Z (1986) Profiles of CO2 concentration and Δ 13C values in tropical rain forests of the upper Rio Negro basin, Venezuela. J Trop Ecol 2:207–217

    Google Scholar 

  • Medina E, Sternberg L, Cuevas E (1991) Vertical stratification of δ13C values in closed natural and plantation forests in the Luquillo mountains, Puerto Rico. Oecologia 87:369–372

    Article  Google Scholar 

  • Nichol CJ, Rascher U, Matsubara S, Osmond B (2006) Assessing photosynthetic efficiency in an experimental mangrove canopy using remote sensing and chlorophyll fluorescence. Trees 20:9–15

    Article  CAS  Google Scholar 

  • Nobel PS (1983) Biophysical plant physiology and ecology. WH Freeman, San Francisco

    Google Scholar 

  • Piccolo MC, Neill C, Cerri CC (1994) Natural abundance of 15N in soils along forest-to-pasture chronosequences in the western Brazilian Amazon Basin. Oecologia 99:112–117

    Article  Google Scholar 

  • Richey JE, Adams JB, Victoria RL (1990) Synoptic-scale hydrological and biogeochemical cycles in the Amazon river basin: a modeling and remote sensing perspective. In: Hobbs RJ, Mooney HA (eds) Remote sensing of biosphere functioning. Ecological studies, vol 79. Springer, Berlin Heidelberg New York, pp 249–268

    Google Scholar 

  • Roux X le, Bariac T, Sinoquet H, Genty B, Piel C, Mariotti A, Girardin C, Richard P (2001) Spatial distribution of leaf water-use efficiency and carbon isotope discrimination within an isolated tree crown. Plant Cell Environ 24:1021–1032

    Article  Google Scholar 

  • Rundel PW, Ehleringer JR, Nagy KA (eds) (1988) Stable isotopes in ecological research. Ecological studies, vol 68. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Running SW (1990) Estimating terrestrial primary productivity by combining remote sensing and ecosystem simulation. In: Hobbs RJ, Mooney HA (eds) Remote sensing of biosphere functioning. Ecological studies, vol 79. Springer, Berlin Heidelberg New York, pp 65–86

    Google Scholar 

  • Scheidegger Y, Saurer M, Bahn M, Siegwolf R (2000) Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: a conceptual model. Oecologia 125:350–357

    Article  Google Scholar 

  • Schuster HG (1995) Deterministic chaos. VCH, Weinheim

    Google Scholar 

  • Sellers PJ, Hall FG, Strebel DE, Asrar G, Murphy RE (1990) Satellite remote sensing and field experiments. In: Hobbs RJ, Mooney HA (eds) Remote sensing of biosphere functioning. Ecological studies, vol. 79. Springer, Berlin Heidelberg New York, pp 169–201

    Google Scholar 

  • Sheshshayee MS, Bindumadhava H, Ramesh R, Prasad TG, Lakshminarayana MR, Udayakumar M (2005) Oxygen isotope enrichment (Δ18O) as a measure of time averaged transpiration rate. J exp Bot 56:3033–3039

    Article  PubMed  CAS  Google Scholar 

  • Smith BN (1975) Carbon and hydrogen isotopes of sucrose from various sources. Naturwissenschaften 62:390

    Article  CAS  Google Scholar 

  • Stone L, Ezrati S (1996) Chaos, cycles and spatiotemporal dynamics in plant ecology. J Ecol 84:279–291

    Article  Google Scholar 

  • Terwilliger VJ, Kitajima K, Roux-Swarthout DJ le, Mulkey S, Wright SJ (2001) Intrinsic water-use efficiency and heterotrophic investment in tropical leaf growth of two neotropical pioneer species as estimated from δ13C values. New Phytol 152:267–281

    Article  Google Scholar 

  • Tieszen LL, Senyimba MM, Imbamba SK, Troughton JH (1979) The distribution of C3 and C4 grasses and carbon isotope discrimination along an altitudinal and moisture gradient in Kenya. Oecologia 37:337–350

    Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton Univ. Press, Princeton

    Google Scholar 

  • Wallace JF, Campbell N (1990) Analysis of remotely sensed data. In: Hobbs RJ, Mooney HA (eds) Remote sensing of biosphere functioning. Ecological studies, vol 79. Springer, Berlin Heidelberg New York, pp 291–304

    Google Scholar 

  • Walter H (1973) Vegetationszonen und Klima. Ulmer, Stuttgart

    Google Scholar 

  • Walter H (1982) Bekenntnisse eines Ökologen. 3. Auflage. G Fischer, Stuttgart

    Google Scholar 

  • Walter H, Breckle S-W (1983) Ökologie der Erde, Bd 1, Ökologische Grundlagen in globaler Sicht. G Fischer, Stuttgart

    Google Scholar 

  • Walter H, Breckle S-W (1984) Ökologie der Erde, Bd 2, Spezielle Ökologie der tropischen und subtropischen Zonen. G Fischer, Stuttgart

    Google Scholar 

  • Walter H, Lieth H (1967) Klimadiagramm – Weltatlas. G Fischer, Jena

    Google Scholar 

  • Warren CR, Adams MA (2006) Internal conductance does not scale with photosynthetic capacity: implications for carbon isotope discrimination and the economics of water and nitrogen use in photosynthesis. Plant Cell Environ 29:192–201

    Article  PubMed  CAS  Google Scholar 

  • Wessman CA (1990) Evaluation of canopy biochemistry. In: Hobbs RJ, Mooney HA (eds) Remote sensing of biosphere functioning. Ecological studies, vol 79. Springer, Berlin Heidelberg New York, pp 135–156

    Google Scholar 

  • Woodward FI (1987) Climate and plant distribution. Cambridge University Press, Cambridge

    Google Scholar 

  • Ziegler H (1989) Hydrogen isotope fractionation in plant tissues. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable isotopes in ecological research. Ecological studies, vol 68. Springer, Berlin Heidelberg New York, pp 105–123

    Google Scholar 

  • Ziegler H (1994) Stable isotopes in plant physiology and ecology. Progr Bot 56:1–24

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Large-Scale Sensing and Diagnosis in Relation to the Tropical Environment . In: Physiological Ecology of Tropical Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71793-5_2

Download citation

Publish with us

Policies and ethics