Skip to main content

Páramos

  • Chapter
  • 1580 Accesses

Abstract

The cold tropics (Sect. 1.2) comprise the “regions within the tropics occurring between the upper limit of continuous, closed-canopy forest (often around 3,500 – 3,900 m) and the upper limit of plant life (often around 4,600 – 4,900m)”. In this way Rundel et al. (1994a) define “tropical alpine environments”. They use “alpine” as a more general term in an attempt to avoid regional terms like páramo and jalca for the moist Andes and puna for the drier Andes in South America and Afroalpine and moorland in Africa. However, “alpine” is also a regional term applying to environments outside the tropics. On the other hand, since the conditions and the physiognomy of vegetation are similar on tropical mountains in different continents, especially in Africa and South America, we might as well choose the term páramo. Increasingly, this is used as the general term to describe vegetation in the cold tropics extending from somewhat above 3,000m to nearly 5,000m above sea level (Fig. 12.1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ball MC, Canny MJ, Huang CX, Egerton JJG, Wolfe J (2006) Freeze/thaw-induced embolism depends on nadir temperature: the heterogeneous hydration hypothesis. Plant Cell Environ 29:729–745

    Article  PubMed  CAS  Google Scholar 

  • Beck E (1983) Frost- und Feuerresistenz tropisch-alpiner Pflanzen. Naturwiss Rundsch 36:105–109

    Google Scholar 

  • Beck E (1994a) Cold tolerance in tropical alpine plants. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments. Plant form and function. Cambridge University Press, Cambridge, pp 77–110

    Google Scholar 

  • Beck E (1994b) Turnover and conservation of nutrients in the pachycaul Senecio keniodendron. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments. Plant form and function. Cambridge University Press, Cambridge, pp 215–221

    Google Scholar 

  • Beck E, Scheibe R, Senser M, Müller W (1980) Estimation of leaf and stem growth of unbranched Senecio keniodendron trees. Flora 170:68–76

    Google Scholar 

  • Beck E, Senser M, Scheibe R, Steiger H-M, Pongratz P (1982) Frost avoidance and freezing tolerance in Afroalpine “giant-rosette” plants. Plant Cell Environ 5:215–222

    Google Scholar 

  • Beck E, Scheibe R, Senser M (1983) The vegetation of the Shira Plateau and the western slopes of Kibo (Mt. Kilimanjaro, Tanzania). Phytocoenologia 11:1–30

    Google Scholar 

  • Beck E, Schulze E-D, Senser M, Scheibe R (1984) Equilibrium freezing of leaf water and extracellular ice formation in Afroalpine “giant-rosette” plants. Planta 162:276–282

    Article  Google Scholar 

  • Carlquist S (1994) Anatomy of tropical alpine plants. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments. Plant form and function. Cambridge University Press, Cambridge, pp 111–128

    Google Scholar 

  • Goldstein G, Nobel PS (1991) Changes in osmotic pressure and mucilage during low-temperature acclimation of Opuntia ficus-indica. Plant Physiol 97:954–961

    Article  PubMed  CAS  Google Scholar 

  • Goldstein G, Nobel PS (1994) Water relations and low-temperature acclimation for cactus species varying in freezing tolerance. Plant Physiol 104:675–681

    PubMed  CAS  Google Scholar 

  • Hedberg O (1964a) Features of Afroalpine plant ecology. Acta Phytogeogr Suec 49:1–144

    Google Scholar 

  • Hedberg O (1964b) Etudes écologiques de la flore Afroalpine. Bull Soc R Bot Belg 97:5–18

    Google Scholar 

  • Jones HG (1992) Plants and microclimates, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Keeley JE, Keeley SC (1989) Crassulacean acid metabolism (CAM) in high elevation tropical cactus. Plant Cell Environ 12:331–336

    Article  CAS  Google Scholar 

  • Keeley JE, DeMason DA, Gonzalez R, Markham KR (1994) Sediment-based carbon nutrition in tropical alpine Isoëtes. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments. Plant form and function., Cambridge University Press, Cambridge, pp 167–194

    Google Scholar 

  • Krog JO, Zachariassen KE, Larsen B, Smidsrod O (1979) Thermal buffering in Afroalpine plants due to nucleating agent-induced water freezing. Nature 282:300–301

    Article  Google Scholar 

  • Lang M, Schindler C (1994) The effect of leaf-hairs on blue and red fluorescence emission and on zeaxanthin cycle performance of Senecio medley L. J Plant Physiol 144:680–685

    CAS  Google Scholar 

  • Lauer W (1975) Vom Wesen der Tropen. Klimaökologische Studien zum Inhalt und zur Abgrenzung eines irdischen Landschaftsgürtels. Akad Wiss Lit Abh Math Naturwiss Kl (Mainz) 1975, 3:5–52

    Google Scholar 

  • Lipp CC, Goldstein G, Meinzer FC, Niemczura W (1994) Freezing tolerance and avoidance in high-elevation Hawaiian plants. Plant Cell Environ 17:1035–1044

    Article  Google Scholar 

  • Medina E, Delgado M (1976) Photosynthesis and night CO2-fixation in Echeveria columbiana Poellnitz. Photosynthetica 10:155–163

    CAS  Google Scholar 

  • Meinzer F, Goldstein G (1985) Some consequences of leaf pubescence in the Andean giant-rosette plant Espeletia timotensis. Ecology 66:512–520

    Article  Google Scholar 

  • Meinzer FC, Goldstein G, Rundel PW (1994) Comparative water relations of tropical alpine plants. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments. Plant form and function. Cambridge University Press, Cambridge, pp 61–76

    Google Scholar 

  • Melcher PJ, Goldstein G, Meinzer FC, Minyard B, Giambelluca TW, Loope LL (1994) Determinants of thermal balance in the Hawaiian giant rosette plant, Argyroxiphium sandwicense. Oecologia 98:412–418

    Article  Google Scholar 

  • Miller GA (1994) Functional significance of inflorescence pubescence in tropical alpine species of Puya. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments. Plant form and function. Cambridge University Press, Cambridge, pp 195–213

    Google Scholar 

  • Rada F, Goldstein G, Azocar A, Meinzer F (1985) Freezing avoidance in Andean giant rosette plants. Plant Cell Environ 8:501–507

    Article  Google Scholar 

  • Rehder H (1994) Soil nutrient dynamics in East African alpine ecosystems. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments. Plant form and function. Cambridge University Press, Cambridge, pp 223–228

    Google Scholar 

  • Reisigl H, Keller R (1987) Alpenpflanzen im Lebensraum. G Fischer, Stuttgart

    Google Scholar 

  • Rundel PW (1994) Tropical alpine climates. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments. Plant form and function. Cambridge University Press, Cambridge, pp 21–44

    Google Scholar 

  • Rundel PW, Smith AP, Meinzer FC (eds) (1994a) Tropical alpine environments. Plant form and function. Cambridge University Press, Cambridge

    Google Scholar 

  • Rundel PW, Meinzer FC, Smith AP (1994b) Tropical alpine ecology: progress and priorities. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments. Plant form and function. Cambridge University Press, Cambridge, pp 355–363

    Google Scholar 

  • Schuepp PH (1993) Leaf boundary layers. New Phytol 125:477–507

    Article  Google Scholar 

  • Smith AP (1974) Bud temperature in relation to nyctinastic leaf movement in an Andean giant-rosette plant. Biotropica 6:263–266

    Article  Google Scholar 

  • Squeo FA, Rada F, Azocar A, Goldstein G (1991) Freezing tolerance and avoidance in high tropical Andean plants: is it equally represented in species with different plant height? Oecologia 86:378–382

    Article  Google Scholar 

  • Troll C (1943) Die Frostwechselhäufigkeit in den Luft- und Bodenklimaten der Erde. Meteorol Z 60:161–171

    Google Scholar 

  • Walter H, Breckle S-W (1984) Spezielle Ökologie der tropischen und subtropischen Zonen. G Fischer, Stuttgart

    Google Scholar 

  • Zhu JJ, Beck E (1991) Water relations of Pachysandra leaves during freezing and thawing. Evidence for a negative pressure potential alleviating freeze-dehydration stress. Plant Physiol 97:1146–1153

    PubMed  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Páramos. In: Physiological Ecology of Tropical Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71793-5_12

Download citation

Publish with us

Policies and ethics