Skip to main content

Targeting Differentially Co-regulated Genes by Multiobjective and Multimodal Optimization

  • Conference paper
Evolutionary Computation,Machine Learning and Data Mining in Bioinformatics (EvoBIO 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4447))

  • 1368 Accesses

Abstract

A critical challenge of the postgenomic era is to understand how genes are differentially regulated in and between genetic networks. The fact that such co-regulated genes may be differentially regulated suggests that subtle differences in the shared cis-acting regulatory elements are likely significant, however it is unknown which of these features increase or reduce expression of genes. In principle, this expression can be measured by microarray experiments, though they incorporate systematic errors, and moreover produce a limited classification (e.g. up/down regulated genes). In this work, we present an unsupervised machine learning method to tackle the complexities governing gene expression, which considers gene expression data as one feature among many. It analyzes features concurrently, recognizes dynamic relations and generates profiles, which are groups of promoterssharing common features. The method makes use of multiobjective techniques to evaluate the performance of profiles, and has a multimodal approach to produce alternative descriptions of same expression target. We apply this method to probe the regulatory networks governed by the PhoP/PhoQ two-component system in the enteric bacteria Escherichia coli and Salmonella enterica. Our analysis uncovered profiles that were experimentally validated, suggesting correlations between promoter regulatory features and gene expression kinetics measured by green fluorescent protein (GFP) assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ronen, M.: Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics. Proc. Natl. Acad. Sci. U.S.A. 99(16), 10555–10560 (2002)

    Article  Google Scholar 

  2. Beer, M.A., Tavazoie, S.: Predicting gene expression from sequence. Cell 117(2), 185–198 (2004)

    Article  Google Scholar 

  3. Bar-Joseph, Z., et al.: Computational discovery of gene modules and regulatory networks. Nat. Biotechnol. 21(11), 1337–1342 (2003)

    Article  Google Scholar 

  4. Conlon, E.M., et al.: Integrating regulatory motif discovery and genome-wide expression analysis. Proc. Natl. Acad. Sci. U.S.A. 100(6), 3339–3344 (2003)

    Article  Google Scholar 

  5. Oshima, T., et al.: Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. Mol. Microbiol. 46(1), 281–291 (2002)

    Article  Google Scholar 

  6. Tucker, D.L., Tucker, N., Conway, T.: Gene expression profiling of the pH response in Escherichia coli. J. Bacteriol. 184(23), 6551–6558 (2002)

    Article  Google Scholar 

  7. Mitchell, T.M: Machine learning, xvii, 414. McGraw-Hill, New York (1997)

    Google Scholar 

  8. Deb, K.: Multi-objective optimization using evolutionary algorithms, 1st edn. Wiley-Interscience series in systems and optimization, vol. xix, p. 497. John Wiley & Sons, New York (2001)

    MATH  Google Scholar 

  9. Ruspini, E.H., Zwir, I.: Automated generation of qualitative representations of complex objects by hybrid soft-computing methods. In: Pal, S.K., Pal, A. (eds.) Pattern recognition: from classical to modern approaches, pp. 454–474. World Scientific, Hackensack (2002)

    Google Scholar 

  10. Zwir, I.: Dissecting the PhoP regulatory network of Escherichia coli and Salmonella enterica. Proc. Natl. Acad. Sci. U.S.A. 102(8), 2862–2867 (2005)

    Article  Google Scholar 

  11. Li, H., et al.: Identification of the binding sites of regulatory proteins in bacterial genomes. Proc. Natl. Acad. Sci. U.S.A. 99(18), 11772–11777 (2002)

    Article  Google Scholar 

  12. Stormo, G.D.D.: DNA binding sites: representation and discovery. Bioinformatics 16(1), 16–23 (2000)

    Article  Google Scholar 

  13. Romero Zaliz, R., Zwir, I., Ruspini, E.H.: Generalized analysis of promoters: a method for DNA sequence description. In: Coello Coello, C.A., Lamont, G.B. (eds.) Applications of Multi-Objective Evolutionary Algorithms, pp. 427–445. World Scientific, Singapore (2004)

    Google Scholar 

  14. Salgado, H., et al.: RegulonDB (version 4.0): transcriptional regulation, operon organization and growth conditions in Escherichia coli K-12. Nucleic Acids Res. 32(Database issue), D303-306 (2004)

    Google Scholar 

  15. Zwir, I., Huang, H., Groisman, E.A.: Analysis of differentially-regulated genes within a regulatory network by GPS genome navigation. Bioinformatics 21(22), 4073–4083 (2005)

    Article  Google Scholar 

  16. Bezdek, J.C: Pattern Analysis. In: Pedrycz, W., Bonissone, P.P., Ruspini, E.H. (eds.) Handbook of Fuzzy Computation, pp. F6.1.1-F6.6.20, Institute of Physics, Bristol (1998)

    Google Scholar 

  17. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence 97(1-2), 273–324 (1997)

    Article  MATH  Google Scholar 

  18. Cheeseman, P., Oldford, R.W.: Selecting models from data: artificial intelligence and statistics IV. Springer, New York (1994)

    MATH  Google Scholar 

  19. Cook, D.J.: Structural mining of molecular biology data. IEEE Eng. Med. Biol Mag. 20(4), 67–74 (2001)

    Article  Google Scholar 

  20. Cooper, G.F., Herskovits, E.: A Bayesian Method for the Induction of Probabilistic Networks from Data. Machine Learning 9(4), 309–347 (1992)

    MATH  Google Scholar 

  21. Falkenauer, E.: Genetic Algorithms and Grouping Problems. John Wiley & Sons, New York (1998)

    Google Scholar 

  22. Rissanen, J.: Stochastic complexity in statistical inquiry. World scientific series in computer science, vol. 15. World Scientific, Singapore (1989)

    MATH  Google Scholar 

  23. Tavazoie, S., et al.: Systematic determination of genetic network architecture. Nat. Genet. 22(3), 281–285 (1999)

    Article  Google Scholar 

  24. Groisman, E.A.: The pleiotropic two-component regulatory system PhoP-PhoQ. J. Bacteriol. 183(6), 1835–1842 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Elena Marchiori Jason H. Moore Jagath C. Rajapakse

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Harari, O., Rubio-Escudero, C., Zwir, I. (2007). Targeting Differentially Co-regulated Genes by Multiobjective and Multimodal Optimization. In: Marchiori, E., Moore, J.H., Rajapakse, J.C. (eds) Evolutionary Computation,Machine Learning and Data Mining in Bioinformatics. EvoBIO 2007. Lecture Notes in Computer Science, vol 4447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71783-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71783-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71782-9

  • Online ISBN: 978-3-540-71783-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics