Skip to main content

Bio-mimetic Evolutionary Reverse Engineering of Genetic Regulatory Networks

  • Conference paper
Evolutionary Computation,Machine Learning and Data Mining in Bioinformatics (EvoBIO 2007)

Abstract

The effective reverse engineering of biochemical networks is one of the great challenges of systems biology. The contribution of this paper is two-fold: 1) We introduce a new method for reverse engineering genetic regulatory networks from gene expression data; 2) We demonstrate how nonlinear gene networks can be inferred from steady-state data alone. The reverse engineering method is based on an evolutionary algorithm that employs a novel representation called Analog Genetic Encoding (AGE), which is inspired from the natural encoding of genetic regulatory networks. AGE can be used with biologically plausible, nonlinear gene models where analytical approaches or local gradient based optimisation methods often fail. Recently there has been increasing interest in reverse engineering linear gene networks from steady-state data. Here we demonstrate how more accurate nonlinear dynamical models can also be inferred from steady-state data alone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gardner, T.S., di Bernardo, D., Lorenz, D., Collins, J.J.: Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301(5629), 102–105 (2003)

    Article  Google Scholar 

  2. D’Haeseleer, P., Wen, X., Fuhrman, S., Somogyi, R.: Linear modeling of mRNA expression levels during CNS development and injury. In: Pac. Symp. Biocomput., pp. 41–52 (1999)

    Google Scholar 

  3. Brazhnik, P.: Inferring gene networks from steady-state response to single-gene perturbations. J. Theor. Biol. 237(4), 427–440 (2005)

    Article  MathSciNet  Google Scholar 

  4. Corne, D., Pridgeon, C.: Investigating issues in the reconstructability of genetic regulatory networks. Congress on Evolutionary Computation (2004)

    Google Scholar 

  5. Yeung, M.K.S., Tegnér, J., Collins, J.J.: Reverse engineering gene networks using singular value decomposition and robust regression. PNAS 99(9), 6163–6168 (2002)

    Article  Google Scholar 

  6. Ljung, L.: System identification: Theory for the user. Prentice Hall, Upper Saddle River (1999)

    Google Scholar 

  7. Bäck, T., Fogel, D., Michalewicz, Z.: Evolutionary Computation 1: Basic Algorithms and Operators. Institute of Physics, Bristol (2000)

    Google Scholar 

  8. Mattiussi, C.: Evolutionary synthesis of analog networks. PhD thesis, Ecole Polytechnique Fédérale de Lausanne, Lausanne (2005)

    Google Scholar 

  9. Mattiussi, C., Floreano, D.: Analog Genetic Encoding for the Evolution of Circuits and Networks. IEEE Transactions on Evolutionary Computation (To appear, 2006)

    Google Scholar 

  10. Dürr, P., Mattiussi, C., Floreano, D.: Neuroevolution with analog genetic encoding. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 671–680. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Reinitz, J., Sharp, D.H.: Mechanism of eve stripe formation. Mech. Dev. 49(1-2), 133–158 (1995)

    Article  Google Scholar 

  12. Jaeger, J., Surkova, S., Blagov, M., Janssens, H., Kosman, D., Kozlov, K.N., Myasnikova, M.E., Vanario-Alonso, C.E., Samsonova, M., Sharp, D.H., Reinitz, J.: Dynamic control of positional information in the early drosophila embryo. Nature 430(6997), 368–371 (2004)

    Article  Google Scholar 

  13. Wahde, M., Hertz, J., Andersson, M.: Reverse engineering of sparsely connected genetic regulatory networks. In: Proceedings of the 2nd Workshop of Biochemical Pathways and Genetic Networks (2001)

    Google Scholar 

  14. Noman, N., Iba, H.: Inference of gene regulatory networks using S-system and differential evolution. In: GECCO’05 (2005)

    Google Scholar 

  15. Kimura, S., Ide, K., Kashihara, A., Kano, M., Hatakeyama, M., Masui, R., Nakagawa, N., Yokoyama, S., Kuramitsu, S., Konagaya, A.: Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm. Bioinformatics 21(7), 1154–1163 (2005)

    Article  Google Scholar 

  16. Kholodenko, B.N., Kiyatkin, A., Bruggeman, F.J., Sontag, E., Westerhoff, H.V., Hoek, J.B.: Untangling the wires: a strategy to trace functional interactions in signaling and gene networks. PNAS 99(20), 12841–12846 (2002)

    Article  Google Scholar 

  17. de la Fuente, A., Brazhnik, P., Mendes, P.: Linking the genes: inferring quantitative gene networks from microarray data. Trends Genet. 18(8), 395–398 (2002)

    Article  Google Scholar 

  18. Weaver, D.: Modeling regulatory networks with weight matrices. In: Pacific Symposium on Biocomputing (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Elena Marchiori Jason H. Moore Jagath C. Rajapakse

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Marbach, D., Mattiussi, C., Floreano, D. (2007). Bio-mimetic Evolutionary Reverse Engineering of Genetic Regulatory Networks. In: Marchiori, E., Moore, J.H., Rajapakse, J.C. (eds) Evolutionary Computation,Machine Learning and Data Mining in Bioinformatics. EvoBIO 2007. Lecture Notes in Computer Science, vol 4447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71783-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71783-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71782-9

  • Online ISBN: 978-3-540-71783-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics