Skip to main content

Ginseng

  • Chapter
Transgenic Crops VI

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 61))

Abstract

Ginseng (Panax ginseng C.A. Meyer) has been used as an important oriental medicine since ancient times. Ginseng roots, one of the most famous and expensive crude drugs, are commonly used to promote the quality of life. Cultivation of P. ginseng is difficult because of its long cultivation period of more than 4 years, its sun shading, absence of recurring cultivation and various diseases. Conventional breeding of P. ginseng is also difficult and impractical since the procedure takes more than 50 years. In view of these facts, biotechnological applications are being considered as an alternative approach for ginseng improvement and propagation and the production of raw materials for medicinal use. Research in ginseng biotechnology has been extensive in recent years. Here, recent advances in ginseng biotechnology are discussed, including cell, tissue and organ culture, plant regeneration and genetic transformation, metabolic engineering and genomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe I, Rohmer M, Prestwich GD (1993) Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes. Chem Rev 93:2189–2206

    Article  CAS  Google Scholar 

  • Ahan IO, Le BV, Gendy C, Tran Thanh Van K (1996) Direct somatic embryogenesis through thin cell layer culture of Panax ginseng. Plant Cell Tissue Organ Cult 45:237–243

    Article  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    CAS  Google Scholar 

  • Arya S, Liu JR, Eriksson T (1991) Plant regeneration from protoplasts of Panax ginseng (C.A. Meyer) through somatic embryogenesis. Plant Cell Rep 10:277–281

    Article  Google Scholar 

  • Asaka I, Li I, Hirotani M, Asada Y, Furuya T (1993a) Production of ginsenoside saponins by culturing ginseng (Panax ginseng) embryogenic tissues in bioreactors. Biotechnol Lett 15:1259–1264

    Article  CAS  Google Scholar 

  • Asaka I, Li I, Yoshikawa T, Hirotani M, Furuya T (1993b) Embryoid formation by high temperature treatment from multiple shoots of Panax ginseng. Planta Med 59:345–346

    Article  PubMed  CAS  Google Scholar 

  • Baranov AL (1982) Medicinal use of ginseng and related plants in the Soviet Union: recent trends in the Soviet literature. J Ethnopharmacol 6:339–353

    Article  PubMed  CAS  Google Scholar 

  • Butenko RG, Brushwitzky IV, Slepyan LI (1968) Organogenesis and somatic embryogenesis in the tissue culture of Panax ginseng C.A. Meyer. Bot Zh 7:906–913

    Google Scholar 

  • Chang WC, Hsing YI (1980) Plant regeneration through somatic embryogenesis in root-derived callus of ginseng (Panax ginseng C.A. Meyer). Theor Appl Genet 57:133–135

    Article  Google Scholar 

  • Chen WP, Punja ZK (2002) Agrobacterium-mediated transformation of American ginseng with a rice chitinase gene. Plant Cell Rep 20:1039–1045

    Article  CAS  Google Scholar 

  • Chilton MD, Tepfer D, Petit A, David C, Casse-Delbart F, Tempé J (1982) Agrobacterium rhizogenes inserts T-DNA into the genomes of host plant root cells. Nature 295:432–434

    Article  CAS  Google Scholar 

  • Choi DW, Jung JD, Ha YI, Park HW, In DS, Chung HJ, Liu JR (2005) Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites. Plant Cell Rep 23:557–566

    Article  PubMed  CAS  Google Scholar 

  • Choi KT, Kim MW, Shin HS (1982) Induction of callus and organ in tissue culture of ginseng (Panax ginseng C. A. Meyer). Kor J Ginseng Sci 6:162–167

    Google Scholar 

  • Choi SM, Son SH, Kwon OW, Seon JH, Paek KY (2000) Pilot-scale culture of adventitious roots of ginseng in a bioreactor system. Plant Cell Tissue Organ Cult 62:187–193

    Article  CAS  Google Scholar 

  • Choi YE, Jeong JH (2003) Hormone-independent embryogenic callus production from ginseng cotyledons using high concentration of NH4NO3 and progress towards bioreactor production. Plant Cell Tissue Organ Cult 72:229–235

    Article  CAS  Google Scholar 

  • Choi YE, Soh WY (1994) Origin of somatic embryo induced from cotyledons of zygotic embryos at various developmental stages of ginseng. J Plant Biol 37:365–370

    Google Scholar 

  • Choi YE, Soh WY (1996a) The role of excision on somatic embryogenesis from zygotic embryo of ginseng. Phytomorphology 46:151–160

    Google Scholar 

  • Choi YE, Soh WY (1996b) Effect of plumule and radicle on somatic embryogenesis in the cultures of ginseng zygotic embryos. Plant Cell Tissue Organ Cult 45:137–143

    Article  Google Scholar 

  • Choi YE, Soh WY (1997) Enhanced somatic single embryo formation by plasmolyzing pretreatment from cultured ginseng cotyledons. Plant Sci 130:197–206

    Article  CAS  Google Scholar 

  • Choi YE, Kim HS, Yang DC, Soh WY (1997) Developmental and structural aspects of somatic embryos formed on medium containing 2,3,5-triiodobenzoic acid. Plant Cell Rep 16:738–744

    Article  CAS  Google Scholar 

  • Choi YE, Yang DC, Choi KT (1998a) Induction of somatic embryos by macrosalt stress from mature zygotic embryos of Panax ginseng. Plant Cell Tissue Organ Cult 52:177–182

    Article  CAS  Google Scholar 

  • Choi YE, Yang DC, Park JC, Soh WY, Choi KT (1998b) Regenerative ability of somatic single and multiple embryos from cotyledons of Korean ginseng on hormone-free medium. Plant Cell Rep 17:544–551

    Article  CAS  Google Scholar 

  • Choi YE, Yang DC, Yoon ES, Choi KT (1998c) Plant regeneration via adventitious bud formation from cotyledon explants of Panax ginseng C.A. Meyer. Plant Cell Rep 17:731–736

    Article  CAS  Google Scholar 

  • Choi YE, Yang DC, Yoon ES, Choi KT (1999a) High efficiency plant production via direct somatic single embryogenesis from pre-plasmolysed cotyledons of Panax ginseng and possible dormancy of somatic embryos. Plant Cell Rep 18:493–499

    Article  CAS  Google Scholar 

  • Choi YE, Yang DC, Yoon ES, Choi KT (1999b) Plant regeneration via direct embryo axis-like shoot and root formation from excised cotyledon explants of ginseng seedlings. In Vitro Cell Dev Biol Plant 35:210–213

    Article  Google Scholar 

  • Choi YE, Yang DC, Kusano T, Sano H (2001) Rapid and efficient Agrobacterium-mediated genetic transformation by plasmolyzing pretreatment of cotyledons in Panax ginseng. Plant Cell Rep 20:616–621

    Article  CAS  Google Scholar 

  • Choi YE, Jeong JH, In JK, Yang DC (2003) Production of herbicide-resistant transgenic Panax ginseng through the introduction of phosphinotricin acetyl transferase gene and successful soil transfer. Plant Cell Rep 21:563–568

    Article  PubMed  CAS  Google Scholar 

  • Coleman CI, Hebert JH, Reddy P (2003) The effects of Panax ginseng on quality of life. J Clin Pharm Ther 28:5–15

    Article  PubMed  CAS  Google Scholar 

  • Cui JF, Eneroth P, Bruhn JC (1999) Gynostemma pentaphyllum: identification of major sapogenins and differentiation from Panax species. Eur J Pharm Sci 8:187–191

    Article  PubMed  CAS  Google Scholar 

  • Dey L, Xie JT, Wang A, Wu J, Maleckar SA, Yuan CS (2003) Anti-hyperglycemic effects of ginseng: comparison between root and berry. Phytomedicine 10:600–605

    Article  PubMed  CAS  Google Scholar 

  • Ellis JM, Reddy P (2002) Effects of Panax ginseng on quality of life. Ann Pharmacother 36:375–379

    Article  PubMed  Google Scholar 

  • Furuya T, Ushiyama K (1994) Ginseng production in cultures of Panax ginseng cells. In: Shargool P, Ngo TT (eds) Biotechnological application of plant cultures. CRC, Boca Raton, pp 1–22

    Google Scholar 

  • Furuya T, Yoshikawa T, Orihara Y, Oda H (1983a) Saponin production in cell suspension cultures of Panax ginseng. Planta Med 48:83–87

    Article  PubMed  CAS  Google Scholar 

  • Furuya T, Yoshikawa T, Ishii T, Kajii K (1983b) Regulation of saponin production in callus cultures of Panax ginseng. Plant Med 47:200–204

    Article  CAS  Google Scholar 

  • Furuya T, Yoshikawa T, Orihara Y, Oda H (1984) Studies of the culture conditions for Panax ginseng cells in jar fermentors. J Nat Prod 47:70–75

    Article  CAS  Google Scholar 

  • Giri A, Narasu ML (2000) Transgenic hairy roots: recent trends and applications. Biotechnol Adv 18:1–22

    Article  PubMed  CAS  Google Scholar 

  • Han C, Whang J (1963) Development of female gametophyte of Panax ginseng. Kor J Bot 6:3–6

    Google Scholar 

  • Han JY, Kwon YS, Yang DC, Jung YR, Choi YE (2006) Expression and RNA interference-induced silencing of the dammarenediol synthase gene in Panax ginseng. Plant Cell Physiol 47:1653–1662

    Article  PubMed  CAS  Google Scholar 

  • Hirano Y, Pannatier EG, Zimmermann S, Brunner I (2004) Induction of callose in roots of Norway spruce seedlings after short-term exposure to aluminum. Tree Physiol 24:1279–1283

    PubMed  CAS  Google Scholar 

  • Hong CP, Lee SJ, Park JY, Plaha P, Park YS, Lee YK, Choi JE, Kim KY, Lee JH, Lee J, Jin H, Choi SR, Lim YP (2004) Construction of a BAC library of Korean ginseng and initial analysis of BAC-end sequences. Mol Genet Genomics 271:709–716

    Article  PubMed  CAS  Google Scholar 

  • Hostettmann K, Marston A (1995) Saponins. Cambridge University Press, Cambridge

    Google Scholar 

  • Jeong GT, Park DH, Hwang B, Park K, Kim SW, Woo JC (2002) Studies on mass production of transformed Panax ginseng hairy roots in bioreactor. Appl Biochem Biotechnol 98:1115–1127

    Article  PubMed  Google Scholar 

  • Jeong GT, Park DH, Hwang B, Woo JC (2003) Comparison of growth characteristics of Panax ginseng hairy roots in various bioreactors. Appl Biochem Biotechnol 107:493–503

    Article  Google Scholar 

  • Jeong GT, Park DH, Ryu HW, Hwang B, Woo JC, Doman KF, Kim SW (2005) Production of antioxidant compounds by culture of Panax ginseng CA Meyer hairy roots I. Enhanced production of secondary metabolite in hairy root cultures by elicitation. Appl Biochem Biotechnol 121:1147–1157

    Article  PubMed  Google Scholar 

  • Jhang JJ, Staba EJ, Kim JU (1974) American and Korean ginseng tissue cultures: growth, chemical analysis and plant production. In Vitro 9:253–259

    Article  CAS  Google Scholar 

  • Jung JD, Park HW, Hahn Y, Hur CG, In DS, Chung HJ, Liu JR, Choi DW (2003) Discovery of genes for ginsenoside biosynthesis by analysis of ginseng expressed sequence tags. Plant Cell Rep 22:224–230

    Article  PubMed  CAS  Google Scholar 

  • Kaioumova D, Kaioumov F, Opelz G, Susal C (2001) Toxic effects of the herbicied 2,4-dichlorophenoxyacetic acid on lymphoid organs of the rat. Chemosphere 43:801–805

    Article  PubMed  CAS  Google Scholar 

  • Kevers C, Jacques P, Thonart P, Gaspar T (1999) In vitro root cultures of Panax ginseng and P. quinquefolium. Plant Growth Regul 27:173–178

    Article  CAS  Google Scholar 

  • Kevers C, Gaspar T, Doommes J (2002) The beneficial role of different auxins and polyamines at successive stages of somatic embryo formation and development of Panax ginseng in vitro. Plant Cell Tissue Organ Cult 70:181–188

    Article  CAS  Google Scholar 

  • Kiefer D, Pantuso T (2003) Panax ginseng. Am Fam Physician 68:1539–1542

    PubMed  Google Scholar 

  • Kim KJ, Lee HL (2004) Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res 11:247–261

    Article  PubMed  CAS  Google Scholar 

  • Kim MW, Ko SR, Choi KJ, Kim SC (1987) Distribution of saponin in various sections of Panax ginseng root and changes of its contents according to root age. Kor J Ginseng Sci 11:10–16

    Google Scholar 

  • Kim YS, Hahn EJ, Murthy HN, Paek KY (2004) Adventitious root growth and ginsenoside accumulation in Panax ginseng cultures as affected by methyl jasmonate. Biotechnol Lett 26:1619–1622

    Article  PubMed  CAS  Google Scholar 

  • Kushiro T, Ohno Y, Shibuya M, Ebizuka Y (1997) In vitro conversion of 2.3-oxidosqualene into mammarenediol by Panax ginseng microsome. Biol Pharm Bull 20:292–294

    PubMed  CAS  Google Scholar 

  • Kushiro T, Shibuya M, Ebizuka Y (1998) β-Amyrin synthase: cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants. Eur J Biochem 256:238–244

    Article  PubMed  CAS  Google Scholar 

  • Kuzuyama T (2002) Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Biosci Biotechnol Biochem 66:1619–1627

    Article  PubMed  CAS  Google Scholar 

  • Kwon WS, Lee MK, Choi KT (2000) Breeding process and characteristics of Yunpoong, a new variety of Panax ginseng C.A. Meyer. J Ginseng Res 24:1226–8453

    Google Scholar 

  • Langhansová L, Konrádová H, Vanìk T (2004) Polyethylene glycol and abscisic acid improve maturation and regeneration of Panax ginseng somatic embryos. Plant Cell Rep 22:725–730

    Article  PubMed  CAS  Google Scholar 

  • Lee HS, Kim SW, Lee KW, Eriksson T, Liu JR (1995) Agrobacterium-mediated transformation of ginseng (Panax ginseng) and mitotic stability of the inserted beta-glucuronidase gene in regenerants from isolated protoplasts. Plant Cell Rep 14:545–549

    Article  CAS  Google Scholar 

  • Lee MH, Jeong JH, Seo JW, Shin CG, Kim YS, In JG, Yang DC, Yi JS, Choi YE (2004) Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol 45:976–984

    Article  PubMed  CAS  Google Scholar 

  • Lim HT, Lee HS, Eriksson T (1997) Regeneration of Panax ginseng C.A. Meyer by organogenesis and nuclear DNA analysis of regenerants. Plant Cell Tissue Organ Cult 49:179–187

    Article  CAS  Google Scholar 

  • Lin W, Anuratha CS, Datta K, Potrykus I, Muthukrishnan S, Datta SK (1995) Genetic engineering of rice for resistance to sheath blight. Bio/Technology 13:686–691

    Article  CAS  Google Scholar 

  • Lu MB, Wong HL, Teng WL (2001) Effects of elicitation on the production of saponin in cell culture of Panax ginseng. Plant Cell Rep 20:674–677

    CAS  Google Scholar 

  • Mallol A, Cusido RM, Palazon J, Bonfill M, Morales C, Pinol MT (2001) Ginsenoside production in different phenotypes of Panax ginseng transformed roots. Phytochemistry 57:365–371

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto T, Akihisa T, Soma S, Takido M, Takahashi S (1986) Composition of unsaponifiable lipid from seed oils of Panax ginseng and Panax quinquefolium. J Am Oil Chem Soc 63:544–546

    Article  CAS  Google Scholar 

  • Miskell JA, Parmenter G, Eaton-Rye JJ (2002) Decreased Hill reaction rates and slow turnover of transitory starch in the obligate shade plant Panax quinquefolius L. (American ginseng). Planta 215:969–979

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nam MH, Heo EJ, Kim JY, Kim IIS, Kwon KH, Seo JB, Kwon O, Yoo JS, Park YM (2003) Proteome analysis of the responses of Panax ginseng C.A. Meyer leaves to high light: use of electrospray ionization quadrupole–time of flight mass spectrometry and expressed sequence tag data. Proteomics 3:2351–2367

    Article  PubMed  CAS  Google Scholar 

  • Palazon J, Mallol A, Eibl R, Lettenbauer C, Cusido RM, Pinol MT (2003) Growth and ginsenoside production in hairy root cultures of Panax ginseng using a novel bioreactor. Planta Med 69:344–349

    Article  PubMed  CAS  Google Scholar 

  • Radford JE, Vesk M, Overall RL (1998) Callose deposition at plasmodesmata. Protoplasma 201:30–37

    Article  CAS  Google Scholar 

  • Roberts AG, Oparka K (2003) Plasmodesmata and the control of symplastic transfort. Plant Cell Environ 26:103–124

    Article  Google Scholar 

  • Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction of growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    Article  CAS  Google Scholar 

  • Shanks JV, Morgan J (1999) Plant ‘hairy root’ culture. Curr Opin Biotechnol 10:151–155

    Article  PubMed  CAS  Google Scholar 

  • Shibata S (2001) Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. J Kor Med Sci 16[Suppl]:S28–S37

    Google Scholar 

  • Shoyama Y, Kamura K, Nishioka I (1988) Somatic embryogenesis and clonal multiplication of Panax ginseng. Planta Med 54:155–156

    Article  PubMed  CAS  Google Scholar 

  • Shoyama Y, Zhu XX, Nakai R, Shiraishi S, Kohda H (1997) Micropropagation of Panax notoginseng by somatic embryogenesis and RAPD analysis of regenerated plantlets. Plant Cell Rep 16:450–453

    CAS  Google Scholar 

  • Son SH, Choi SM, Soo JH, Yun SR, Choi MS, Shin EM, Hong YP (1999) Induction and cultures of mountain ginseng adventitious roots and AFLP analysis for identifying mountain ginseng. Biotechnol Bioprocess Eng 4:119–123

    Article  CAS  Google Scholar 

  • Tang W (2000) High-frequency plant regeneration via somatic embryogenesis and organogenesis and in vitro flowering of regenerated plantlets in Panax ginseng. Plant Cell Rep 19:727–732

    Article  CAS  Google Scholar 

  • Teng WL, Sin T, Teng MC (2002) Explant preparation affects culture initiation and regeneration of Panax ginseng and Panax quinquefolius. Plant Cell Tissue Organ Cult 68:233–239

    Article  CAS  Google Scholar 

  • Thanh NT, Murthy HN, Yu KW, Hahn EJ, Paek KY (2005) Methyl jasmonate elicitation enhanced synthesis of ginsenoside by cell suspension cultures of Panax ginseng in 5-I balloon type bubble bioreactors. Appl Microbiol Biotechnol 67:197–201

    Article  PubMed  CAS  Google Scholar 

  • Vogler BK, Pittler MH, Ernst E (1999) The efficacy of ginseng. A systematic review of randomized clinical trials. Eur J Clin Pharmacol 55:567–575

    Article  PubMed  CAS  Google Scholar 

  • Wang AS (1990) Callus induction and plant regeneration of American ginseng. HortScience 25:571–572

    CAS  Google Scholar 

  • Wen J, Zimmer EA (1996) Phylogeny and biogeography of Panax L. (the ginseng genus, Araliaceae): inferences from ITS sequences of nuclear ribosomal DNA. Mol Phylogenet Evol 6:167–177

    Article  PubMed  CAS  Google Scholar 

  • William EG, Meheswaran G (1986) Somatic embryogenesis: factors influencing coordinated behavior of cells as an embryogenic group. Ann Bot 57:443–462

    Google Scholar 

  • Woo SS, Song JS, Lee JY, In DS, Chung HJ, Liu JR, Choi DW (2004) Selection of high ginsenoside producing ginseng hairy root lines using targeted metabolic analysis. Phytochemistry 65:2751–2761

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Hu X, Neill SJ, Fang J, Cai W (2005) Fungal elicitor induces singlet oxygen generation, ethylene release and saponin synthesis in cultured cells of Panax ginseng C.A. Meyer. Plant Cell Physiol 46:947–954

    Article  PubMed  CAS  Google Scholar 

  • Yang DC, Choi YE (2000) Production of transgenic plants via Agrobacterium rhizogenes-mediated transformation of Panax ginseng. Plant Cell Rep 19:491–496

    Article  CAS  Google Scholar 

  • Yang DC, Yang KJ (2000) Pattern and contents of ginsenoside in normal root parts and hairy root lines of Panax ginseng C.A. Meyer. Kor J Plant Tissue Cult 27:485–489

    Google Scholar 

  • Yoshikawa T, Furuya T (1987) Saponin production by cultures of Panax ginseng transformed with Agrobacterium rhizogens. Plant Cell Rep 6:449–453

    CAS  Google Scholar 

  • Yu KW, Gao W, Hahn EJ, Paek KY (2002) Jasmonic acid improves ginsenoside accumulation in adventitious root culture of Panax ginseng C.A. Meyer. Biochem Eng J 3596:1–5

    Google Scholar 

  • Yu KW, Murthy HN, Hahn EJ, Paek KY (2005) Ginsenoside production by hairy root cultures of Panax ginseng: influence of temperature and light quality. Biochem Eng J 23:53–56

    Article  CAS  Google Scholar 

  • Yun TK (2001) Panax ginseng – a non-organ-specific cancer preventive? Lancet Oncol 2:49–55

    Article  PubMed  CAS  Google Scholar 

  • Zhong JJ, Bai Y, Wang SJ (1996) Effects of plant growth regulators on cell growth and ginsenoside saponin production by suspension cultures of Panax quinquefolium. J Biotechnol 45:227–234

    Article  CAS  Google Scholar 

  • Zhu S, Zou K, Fushimi H, Cai S, Komatsu K (2004) Comparative study on triterpene saponins of ginseng drugs. Planta Med 70:666–677

    Article  PubMed  CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Ginseng. In: Pua, EC., Davey, M. (eds) Transgenic Crops VI. Biotechnology in Agriculture and Forestry, vol 61. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71711-9_8

Download citation

Publish with us

Policies and ethics