Skip to main content

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 61))

Abstract

Cotton is the most important natural fiber that has been used for over seven millennia to meet the clothing requirement of mankind. In addition to the fiber, the plant also provides seed, linters, and hull that are used for food, feed, and several other diverse applications. The cotton plant is also susceptible to a large number of pests and pathogens. Traditionally, its cultivation has heavily relied on the use of toxic pesticides. Thus, compared with many other crops, it offers a much larger number of targets that can be modified through the use of modern biotechnological tools. Genetically engineered cotton, offering only insect- and herbicide-resistance traits, has gained rapid and wide acceptance in many cotton-growing countries around the globe. However, this plant also offers many challenges in terms of genetic modification, largely due to its recalcitrance to regeneration in tissue culture. This chapter provides a comprehensive account of the methods and tools needed to transform cotton, important traits introduced into this plant, and the possibilities offered for crop improvement through recent advances in genetic modification technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aragao FJL, Vianna GR, Carvalheira SBRC, Rech EL (2005) Germ line genetic transformation in cotton (Gossypium hirsutum L.) by selection of transgenic meristematic cells with a herbicide molecule. Plant Sci 168:1227–1233

    Article  CAS  Google Scholar 

  • Bacheler J, Mott D, Bowman DT (2006) The relative efficacy of Bollgard, Bollgard II and WideStrike lines against bollworms in North Carolina in 2003 and 2005: implications for producer choices. In: National Cotton Council (ed) Proceedings of the beltwide cotton conference 2006, San Antonio, TX. National Cotton Council, Memphis, pp 1536–1540

    Google Scholar 

  • Bayley C, Trolinder N, Ray C, Morgan M, Quisenberry JE, Ow DW (1992) Engineering 2,4-D resistance into cotton. Theor Appl Genet 83:645–649

    Article  CAS  Google Scholar 

  • Beetham PR, Kipp PB, Sawycky XL, Arntzen CJ, May GD (1999) A tool for functional plant genomics: chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc Natl Acad Sci USA 96:8774–8778

    Article  PubMed  CAS  Google Scholar 

  • Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300:764

    Article  PubMed  CAS  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  PubMed  CAS  Google Scholar 

  • Chlan CA, Lin J, Cary JW, Cleveland TE (1995) A procedure for biolistic transformation and regeneration of transgenic cotton from meristematic tissue. Plant Mol Biol Rep 13:31–37

    Article  Google Scholar 

  • Cousins YL, Lyon BR, Llewellyn DJ (1991) Transformation of an Australian cotton cultivar: prospects for cotton improvement through genetic engineering. Aust J Plant Physiol 18:481–494

    Article  CAS  Google Scholar 

  • Chowdhury B, John ME (1998) Thermal evaluation of transgenic cotton containing polyhydroxybutyrate. Thermochim Acta 313:43–53

    Article  CAS  Google Scholar 

  • Ellis MH, Millar AA, Llewellyn DJ, Peacock WJ, Dennis ES (2000) Transgenic cotton (Gossypium hirsutum) over-expressing alcohol dehydrogenase shows increased ethanol fermentation but no increase in tolerance to oxygen deficiency. Aust J Plant Physiol 27:1041–1050

    CAS  Google Scholar 

  • Emani C, Garcia JM, Lopata-Finch E, Pozo MJ, Uribe P, Kim D-J, Sunilkumar G, Cook DR, Kenerley CM, Rathore KS (2003) Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens. Plant Biotechnol J 1:321–336

    Article  PubMed  CAS  Google Scholar 

  • Estruch JJ, Warren GW, Mullins MA, Nye GJ, Craig JA, Koziel MG (1996) Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Natl Acad Sci USA 93:5389–5394

    Article  PubMed  CAS  Google Scholar 

  • Finer JJ, McMullen MD (1990) Transformation of cotton (Gossypium hirsutum L.) via particle bombardment. Plant Cell Rep 8:586–589

    Article  Google Scholar 

  • Firoozabady E, DeBoer DL, Merlo DJ, Halk EL, Amerson LN, Rashka KE, Murray EE (1987) Transformation of cotton (Gossypium hirsutum L.) by Agrobacterium tumefaciens and regeneration of transgenic plants. Plant Mol Biol 10:105–116

    Article  CAS  Google Scholar 

  • Gould J, Banister S, Hasegawa O, Fahima M, Smith RH (1991) Regeneration of Gossypium hirsutum and G. barbadense from shoot apex tissues for transformation. Plant Cell Rep 10:12–16

    Article  Google Scholar 

  • Gounaris Y, Galanopoulou S, Galanopoulou N, Ladopoulos A, Michailidis Z, Theophilou S (2005) Pollen-mediated genetic transformation of cotton with the Arabidopsis thaliana hmgr cDNA using the particle gun. J Food Agric Environ 3:157–160

    CAS  Google Scholar 

  • Hardee DD, Herzog GA (1997) 50th annual conference report on cotton insect research and control. In: National Cotton Council (ed) Proceedings of the beltwide cotton conference 1997, vol 2, New Orleans, LA. National Cotton Council, Memphis, pp 809–840

    Google Scholar 

  • Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA 94:2122–2127

    Article  PubMed  CAS  Google Scholar 

  • He C, Yan J, Shen G, Fu L, Holaday AS, Auld D, Blumwald E, Zhang H (2005) Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant Cell Physiol 46:1848–1854

    Article  PubMed  CAS  Google Scholar 

  • Iida S, Terada R (2005) Modification of endogenous natural genes by gene targeting in rice and other higher plants. Plant Mol Biol 59:205–219

    Article  PubMed  CAS  Google Scholar 

  • James C (1997) Global status of transgenic crops in 1997. ISAAA Briefs 5:12

    Google Scholar 

  • James C (2004) Global status of commercialized biotech/GM crops: 2004. ISAAA Briefs 32:v

    Google Scholar 

  • James C, Krattiger AF (1996) Global review of the field testing and commercialization of transgenic plants, 1986 to 1995: the first decade of crop biotechnology. ISAAA Briefs 1:27

    Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • John ME (1996) Structural characterization of genes corresponding to cotton fiber mRNA, E6: reduced E6 protein in transgenic plants by antisense gene. Plant Mol Biol 30:297–306

    Article  PubMed  CAS  Google Scholar 

  • John ME, Keller G (1996) Metabolic pathway engineering in cotton: biosynthesis of polyhydroxybutyrate in fiber cells. Proc Natl Acad Sci USA 93:12768–12773

    Article  PubMed  CAS  Google Scholar 

  • Jones K, Kerby T, Collins H, Wofford T, Bates M, Presley J, Burgess J, Beuhler B, Deaton R (1996) Performance of NuCotn with Bollgard. In: National Cotton Council (ed) Proceedings of the beltwide cotton conference 1996, vol 1. National Cotton Council, Memphis, pp 46–47

    Google Scholar 

  • Keller G, Spatola L, McCabe D, Martinell B, Swain W, John ME (1997) Transgenic cotton resistant to herbicide bialaphos. Transgenic Res 6:385–392

    Article  CAS  Google Scholar 

  • Kochevenko A, Willmitzer L (2003) Chimeric RNA/DNA oligonucleotide-based site-specific modification of the tobacco acetolactate synthase gene. Plant Physiol 132:174–184

    Article  PubMed  CAS  Google Scholar 

  • Kornyeyev D, Logan BA, Payton P, Allen RD, Holaday AS (2001) Enhanced photochemical light utilization and decreased chilling-induced photoinhibition of photosystem II in cotton overexpressing genes encoding chloroplast-targeted antioxidant enzymes. Physiol Plant 113:323–331

    Article  PubMed  CAS  Google Scholar 

  • Kornyeyev D, Logan BA, Payton P, Allen RD, Holaday AS (2003) Elevated chloroplastic glutathione reductase activities decrease chilling-induced photoinhibition by increasing rates of photochemistry, but not thermal energy dissipation, in transgenic cotton. Funct Plant Biol 30:101–110

    Article  CAS  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004) Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol Biol 56:203–216

    Article  PubMed  CAS  Google Scholar 

  • Li X, Wang XD, Zhao X, Dutt Y (2004) Improvement of cotton fiber quality by transforming the acsA and acsB genes into Gossypium hirsutum L. by means of vacuum infiltration. Plant Cell Rep. 22:691–697

    Article  PubMed  CAS  Google Scholar 

  • Li X-B, Cai L, Cheng N-H, Liu J-W (2002) Molecular characterization of the cotton ghTUB1 gene that is preferentially expressed in fiber. Plant Physiol 130:666–674

    Article  PubMed  CAS  Google Scholar 

  • Li X-B, Fan X-P, Wang X-L, Cai L, Yang WC (2005) The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell 17:859–875

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Singh SP, Green AG (2002) High-stearic and high-oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing. Plant Physiol 129:1732–1743

    Article  PubMed  CAS  Google Scholar 

  • Lyon BR, Cousins YL, Llewellyn DJ, Dennis ES (1993) Cotton plants transformed with a bacterial degradation gene are protected from accidental spray drift damage by the herbicide 2,4-dichlorophenoxyacetic acid. Transgenic Res 2:162–169

    Article  CAS  Google Scholar 

  • Mancini F, Van Bruggen AHC, Jiggins JLS, Ambatipudi, AC, Murphy H (2005) Acute pesticide poisoning among female and male cotton growers in India. Int J Occup Environ Health 11:221–232

    PubMed  CAS  Google Scholar 

  • McCabe DE, Martinell BJ (1993) Transformation of elite cotton cultivars via particle bombardment of meristems. Bio/Technology 11:596–598

    Article  Google Scholar 

  • McCabe DE, Martinell BJ, John ME (1998) Genetic transformation of cotton through particle bombardment. In: Bajaj YPS (ed) Cotton. (Biotechnology in agriculture and forestry, vol 42) Springer, Berlin Heidelberg New York, pp 263–273

    Google Scholar 

  • McCaffery A, Caprio M, Jackson R, Marcus M, Martin T, Dickerson D, Negrotto D, O’Reilly D, Chen E, Lee M (2006) Effective IRM with the novel insecticidal protein Vip3A. In: National Cotton Council (ed) Proceedings of the beltwide cotton conference 2006, San Antonio, TX. National Cotton Council, Memphis, pp 1229–1235

    Google Scholar 

  • McFadden H, Feyter R de, Murray F, Grover A., Llewellyn D, Dennis E, Peacock WJ (2000) Genetic engineering approaches to the improvement of cotton’s tolerance to Verticillium wilt. In: Tjamos EC, Rowe RC, Heale JB, Fravel DR (eds) Advances in Verticillium research and disease management. APS, St Paul, pp 187–191

    Google Scholar 

  • Micinski S, Waltman WF, Spaulding HL (2006) Efficacy of WideStrike for control of the bollworm/tobacco budworm complex in northwest Lousiana. In: National Cotton Council (ed) Proceedings of the beltwide cotton conference 2006, San Antonio, TX. National Cotton Council, Memphis, pp 1090–1094

    Google Scholar 

  • Murray F, Llewellyn D, McFadden H, Last D, Dennis ES, Peacock WJ (1999) Expression of the Talaromyces flavus glucose oxidase gene in cotton and tobacco reduces fungal infection, but is also phytotoxic. Mol Breed 5:219–232

    Article  CAS  Google Scholar 

  • Nida DL, Kolacz KH, Buehler RE, Deaton WR, Schuler WR, Armstrong TA, Taylor ML, Ebert CC, Rogan GJ, Padgette SR, Fuchs RL (1996) Glyphosate-tolerant cotton: genetic characterization and protein expression. J Agric Food Chem 44:1960–1966

    Article  CAS  Google Scholar 

  • Panter D, Ward R, Stanton J, Kiser J, Houck C (1996) BXN57: a new Buctril resistant cotton variety from Stoneville Pedigreed Seed Company. In: National Cotton Council (ed) Proceedings of the beltwide cotton conference 1996, vol 1, Nashville, TN. National Cotton Council, Memphis, p. 44

    Google Scholar 

  • Payton P, Webb R, Kornyeyev D, Allen RD, Holaday AS (2001) Protecting cotton photosynthesis during moderate chilling at high light intensity by increasing chloroplastic antioxidant enzyme activity. J Exp Bot 52:2345–2354

    Article  PubMed  CAS  Google Scholar 

  • Perlak FJ, Deaton RW, Armstrong TA, Fuchs RL, Sims SR, Greenplate JT, Fischhoff DA (1990) Insect resistant cotton plants. Bio/Technology 8:939–943

    Article  PubMed  CAS  Google Scholar 

  • Perkins R (2004) A new herbicide from Bayer CropScience for use in LibertyLink cotton. In: National Cotton Council (ed) Proceedings of the beltwide cotton conference 2006, San Antonio, TX. National Cotton Council, Memphis, p. 114

    Google Scholar 

  • Potrykus I (1991) Gene transfer to plants: assessment of published approaches and results. Annu Rev Plant Physiol Plant Mol Biol 42:205–225

    Article  CAS  Google Scholar 

  • Rajasekaran K, Grula JW, Hudspeth RL, Pofelis S, Anderson DM (1996) Herbicide-resistant Acala and Coker cottons transformed with a native gene encoding mutant forms of acetohydroxyacid synthase. Mol Breed 2:307–319

    Article  CAS  Google Scholar 

  • Rajasekaran K, Hudspeth RL, Cary JW, Anderson DM, Cleveland TE (2000) High-frequency stable transformation of cotton (Gossypium hirsutum L.) by particle bombardment of embryogenic cell suspension cultures. Plant Cell Rep 19:539–545

    Article  CAS  Google Scholar 

  • Rajasekaran K, Cary JW, Jaynes JM, Cleveland TE (2005) Disease resistance conferred by the expression of a gene encoding a synthetic peptide in transgenic cotton (Gossypium hirsutum L.) plants. Plant Biotechnol J 3:545–554

    Article  PubMed  CAS  Google Scholar 

  • Rathore KS, Sunilkumar G, Campbell LM (2006) Cotton (Gossypium hirsutum L.). In: Wang K (ed) Agrobacterium protocols, vol 1, 2nd edn. (Methods in molecular biology, vol 343) Humana, Totowa, N.J., pp 267–279

    Google Scholar 

  • Rinehart JA, Petersen MW, John ME (1996) Tissue-specific and developmental regulation of cotton gene FbL2A. Plant Physiol 112:1331–1341

    Article  PubMed  CAS  Google Scholar 

  • Robinson E (2006) Second generation technology: what’s advantage of next Bt cotton? Delta Farm Press. Available at: deltafarmpress.com/mag/farming_second_generation_technology/

    Google Scholar 

  • Ruan Y-L, Llewellyn DJ, Furbank RT (2003) Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell 15:952–964

    Article  PubMed  CAS  Google Scholar 

  • Sanjaya, Satyavathi VV, Prasad V, Kirthi N, Maiya SP, Savithri HS, Lakshmi Sita G (2005) Development of cotton transgenics with antisense AV2 gene for resistance against cotton leaf curl virus (CLCuD) via Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 81:55–63

    Article  CAS  Google Scholar 

  • Satyavathi VV, Prasad V, Gita Lakshmi B, Lakshmi Sita G (2002) High efficiency transformation protocol for three Indian cotton varieties via Agrobactrium tumefaciens. Plant Sci 162:215–223

    Article  CAS  Google Scholar 

  • Sunilkumar G, Rathore KS (2001) Transgenic cotton: factors influencing Agrobacterium-mediated transformation and regeneration. Mol Breed 8:37–52

    Article  CAS  Google Scholar 

  • Sunilkumar G, Connell JP, Smith CW, Reddy AS, Rathore KS (2002a) Cotton a-globulin promoter: isolation and functional characterization in transgenic cotton, Arabidopsis, and tobacco. Transgenic Res 11:347–359

    Article  PubMed  CAS  Google Scholar 

  • Sunilkumar G, Mohr L, Lopata-Finch E, Emani C, Rathore KS (2002b) Developmental and tissue-specific expression of CaMV 35S promoter in cotton as revealed by GFP. Plant Mol Biol 50:463–474

    Article  PubMed  CAS  Google Scholar 

  • Sunilkumar G, Campbell LM, Hossen M, Connell JP, Hernandez E, Reddy AS, Smith CW, Rathore KS (2005) A comprehensive study of the use of a homologous promoter in antisense cotton lines exhibiting a high seed oleic acid phenotype. Plant Biotechnol J 3:319–330

    Article  PubMed  CAS  Google Scholar 

  • Sunilkumar G, Campbell LM, Puckhaber L, Stipanovic RD, Rathore KS (2006) Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl Acad Sci USA 103:18054–18059

    Article  PubMed  CAS  Google Scholar 

  • Thomas JC, Adams DG, Keppenne VD, Wasmann CC, Brown JK, Kanost MR, Bohnert HJ (1995) Protease inhibitors of Manduca sexta expressed in transgenic cotton. Plant Cell Rep 14:758–762

    Article  CAS  Google Scholar 

  • Townsend BJ, Poole A, Blake CJ, Llewellyn DJ (2005) Antisense suppression of a (+)-δ-cadinene synthase gene in cotton prevents the induction of this defense response gene during bacterial blight infection but not its constitutive expression. Plant Physiol 138:516–528

    Article  PubMed  CAS  Google Scholar 

  • Trolinder NL, Xhixian C (1989) Genotype specificity of the somatic embryogenesis response in cotton. Plant Cell Rep 8:133–136

    Article  Google Scholar 

  • Umbeck P, Johnson G, Barton K, Swain W (1987) Genetically transformed cotton (Gossypium hirsutum L.) plants. Bio/Technology 5:263–266

    Article  CAS  Google Scholar 

  • Wang YQ, Chen DJ, Wang DM, Huang QS, Yao ZP, Liu FJ, Wei XW, Li RJ, Zhang ZN, Sun YR (2004) Over-expression of Gastrodia anti-fungal protein enhances Verticillium wilt resistance in coloured cotton. Plant Breed 123:454–459

    Article  CAS  Google Scholar 

  • Wilkins TA, Mishra R, Trolinder NL (2004) Agrobacterium-mediated transformation and regeneration of cotton. J Food Agric Environ 2:179–187

    Google Scholar 

  • Wright DA, Townsend JA, Winfrey RJ, Irwin PA, Rajagopal J, Lonosky PM, Hall BD, Jondle MD, Voytas DF (2005) High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 44:693–705

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Luo X, Guo H, Xiao J, Tian Y (2006) Transgenic cotton expressing Amaranthus caudatus agglutinin, confers enhanced resistance to aphids. Plant Breed 125:390–394

    Article  CAS  Google Scholar 

  • Yan J, He C, Wang J, Mao Z, Holaday SA, Allen RD, Zhang H (2004) Overexpression of the Arabidopsis 14-3-3 protein GF14l in cotton leads to a “Stay-Green” phenotype and improves stress tolerance under moderate drought conditions. Plant Cell Physiol 45:1007–1014

    Article  PubMed  CAS  Google Scholar 

  • Zapata C, Park SH, El-Zik KM, Smith RH (1999) Transformation of a Texas cotton cultivar by using Agrobacterium and the shoot apex. Theor Appl Genet 98:252–256

    Article  Google Scholar 

  • Zhu T, Peterson DJ, Tagliani L, St. Clair G, Baszczynski CL, Bowen B (1999) Targeted manipulation of maize genes in vivo using chimeric RNA/DNA oligonucleotides. Proc Natl Acad Sci USA 96:8768–8773

    Article  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Cotton. In: Pua, EC., Davey, M. (eds) Transgenic Crops VI. Biotechnology in Agriculture and Forestry, vol 61. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71711-9_6

Download citation

Publish with us

Policies and ethics