Skip to main content

Peanut

  • Chapter
Transgenic Crops VI

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 61))

Abstract

Peanut or groundnut (Arachis hypogaea L.) is a food crop grown in warm temperate, sub-tropical and tropical regions of the world. The seeds are consumed either after minimal processing, such as roasting or boiling, or are used for peanut paste/butter, in confectionary items, or for oil extraction. The biology of fruit production is novel compared with other primary crops in that the fruit develop underground. This geocarpic development also requires novel solutions for pest and pathogen control, as well as harvesting. An alternative to pesticide use is the development of genetic or host-plant resistance, which can be accessed from within the Arachis gene pool through traditional breeding or outside the gene pool using genetic engineering. Cultivated peanut is tetraploid whereas the overwhelming majority of its wild relatives are diploid, complicating the transfer of traits across ploidy levels. The development and application of molecular markers and transformation technologies, both of which can facilitate crop improvement, are the subject of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson WF, Kochert G, Holbrook CC, Stalker HT (2004) Phenotypic and molecular evaluation of interspecific peanut (Arachis) lines. Peanut Sci 31:65–70

    Article  CAS  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  PubMed  CAS  Google Scholar 

  • Bertioli DJ, Leal-Bertioli SCM, Lion MB, Santos VL, Pappas G, Cannon SB, Guimaraes PM (2003) A large scale analysis of resistance gene homologues in Arachis. Mol Genet Genomics 270:34–45

    Article  PubMed  CAS  Google Scholar 

  • Bhagwat A, Krishna T, Bhatia C (1997) RAPD analysis of induced mutants of groundnut (Arachis hypogaea L.). J Genet 76:201–208

    CAS  Google Scholar 

  • Bhagwat A, Anantharaman R, Pereira S, Gopalakrishna T (2001) Identification of polymorphism by random amplified polymorphic DNA (RAPD) in groundnut (Arachis hypogaea L.). Plant Var Seeds 14:119–124

    Google Scholar 

  • Bhat SR, Srinivasan S (2002) Molecular and genetic analyses of transgenic plants: considerations and approaches. Plant Sci 163:673–681

    Article  CAS  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic-linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    PubMed  CAS  Google Scholar 

  • Bowen KL, Mack TP (1993) Relationship of damage from the lesser cornstalk borer to Aspergillus flavus contamination in peanuts. J Entomol Sci 28:29–42

    Google Scholar 

  • Brar GS, Cohen BA, Vick CL, Johnson GW (1994) Recovery of transgenic peanut (Arachis hypogaea L.) plants from elite cultivars utilizing ACCELL technology. Plant J 5:745–753

    Article  Google Scholar 

  • Burow M, Simpson C, Paterson A, Starr J (1996) Identification of peanut (Arachis hypogaea L.) RAPD markers diagnostic of root-knot nematode (Meloidogyne arenaria (Neal) Chitwood) resistance. Mol Breed 2:369–379

    Article  CAS  Google Scholar 

  • Burow M, Simpson C, Starr J, Paterson A (2001) Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.): broadening the gene pool of a monophyletic polyploid species. Genetics 159:823–837

    PubMed  CAS  Google Scholar 

  • Caetano-Anolles G, Bassam BJ, Gresshoff PM (1991) DNA amplification fingerprinting using very short arbitrary oligonucleotide primers. Bio/Technology 9:553–557

    Article  PubMed  CAS  Google Scholar 

  • Chenault KD, Payton ME (2003) Genetic transformation of a runner-type peanut with the nucleocapsid gene of tomato spotted wilt virus. Peanut Sci 30:112–115

    Article  CAS  Google Scholar 

  • Chenault KD, Burns JA, Melouk HA, Payton ME (2002) Hydrolase activity in transgenic peanut. Peanut Sci 29:89–95

    CAS  Google Scholar 

  • Chenault KD, Payton ME, Melouk HA (2003) Greenhouse testing of transgenic peanut for resistance to Sclerotinia minor. Peanut Sci 30:116–120

    Article  Google Scholar 

  • Chenault KD, Melouk HA, Payton ME (2005) Field reaction to Sclerotinia blight among transgenic peanut lines containing antifungal genes. Crop Sci 45:511–515

    Article  CAS  Google Scholar 

  • Cheng M, Jarret R, Li Z, Xing A, Demski J (1996) Production of fertile transgenic peanut (Arachis hypogaea L.) plants using Agrobacterium tumefaciens. Plant Cell Rep 15:653–657

    Article  CAS  Google Scholar 

  • Cheng M, Jarret R, Li Z, Demski J (1997) Expression and inheritance of foreign genes in transgeic peanut plants generated by Agrobacterium-mediated transformation. Plant Cell Rep 16:541–544

    Google Scholar 

  • Cheng M, Lowe B, Spencer T, Ye X, Armstrong C (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell Dev Biol Plant 40:31–45

    Article  Google Scholar 

  • Choi K, Burow M, Church G, Burow G, Paterson A, Simpson C, Starr J (1999) Genetics and mechanism of resistance to Meloidogyne arenaria in peanut germplasm. J Nematol 31:283–290

    CAS  PubMed  Google Scholar 

  • Chu Y, Holbrook C, Timper P, Ozias-Akins P (2007) Development of a PCR-based molecular marker to select for nematode resistance in peanut. Crop Sci (47:841-847)

    Google Scholar 

  • Church G, Simpson C, Burow M, Paterson A, Starr J (2000) Use of RFLP markers for identification of individuals homozygous for resistance to Meloidogyne arenaria in peanut. Nematology 2:575–580

    Article  CAS  Google Scholar 

  • Creste S, Tsai SM, Valls JFM, Gimenes MA, Lopes CR (2005) Genetic characterization of Brazilian annual Arachis species from sections Arachis and Heteranthae using RAPD markers. Genet Res Crop Evol 52:1079–1086

    Article  CAS  Google Scholar 

  • Deng XY, Wei ZM, An HL (2001) Transgenic peanut plants obtained by particle bombardment via somatic embryogenesis regeneration system. Cell Res 11:156–160

    Article  PubMed  CAS  Google Scholar 

  • Dodo H, Konan K, Viquez O (2005) A genetic engineering strategy to eliminate peanut allergy. Curr Allergy Asthma Rep 5:67–73

    Article  PubMed  CAS  Google Scholar 

  • Dos Santos V, Gimenes M, Valls J, Lopes C (2003) Genetic variation within and among species of five sections of the genus Arachis L. (Leguminosae) using RAPDs. Genet Res Crop Evol 50:841–848

    Article  CAS  Google Scholar 

  • Dwivedi S, Gurtu S, Chandra S, Yuejin W, Nigam S (2001) Assessment of genetic diversity among selected groundnut germplasm. I: RAPD analysis. Plant Breed 120:345–349

    Article  CAS  Google Scholar 

  • Dwivedi SL, Crouch JH, Nigam SN, Ferguson ME, Paterson AH (2003) Molecular breeding of groundnut for enhanced productivity and food security in the semi-arid tropics: opportunities and challenges. Adv Agron 80:153–221

    Article  CAS  Google Scholar 

  • Eapen S, George L (1994) Agrobacterium tumefaciens mediated gene transfer in peanut (Arachis hypogaea L.). Plant Cell Rep 13:582–586

    Article  CAS  Google Scholar 

  • Egnin M, Mora A, Prakash CS (1998) Factors enhancing Agrobacterium tumefaciens-mediated gene transfer in peanut (Arachis hypogaea L.). In Vitro Cell Dev Biol-Plant 34:310–318

    PubMed  CAS  Google Scholar 

  • Ferguson ME, Bramel PJ, Chandra S (2004a) Gene diversity among botanical varieties in peanut (Arachis hypogaea L.). Crop Sci 44:1847–1854

    Article  CAS  Google Scholar 

  • Ferguson ME, Burow MD, Schulze SR, Bramel PJ, Paterson AH, Kresovich S, Mitchell S (2004b) Microsatellite identification and characterization in peanut (A. hypogaea L.). Theor Appl Genet 108:1064–1070

    Article  PubMed  CAS  Google Scholar 

  • Garcia G, Stalker H, Kochert G (1995) Introgression analysis of an interspecific hybrid population in peanuts (Arachis hypogaea L.) using RFLP and RAPD markers. Genome 38:166–176

    PubMed  CAS  Google Scholar 

  • Garcia G, Stalker H, Shroeder E, Kochert G (1996) Identification of RAPD, SCAR, and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenasii into Arachis hypogaea. Genome 39:836–845

    PubMed  CAS  Google Scholar 

  • Garcia G, Tallury S, Stalker H, Kochert G (2006) Molecular analysis of Arachis interspecific hybrids. Theor Appl Genet 112:1342–1348

    Article  PubMed  CAS  Google Scholar 

  • Gimenes M, Lopes C, Galgaro M, Valls J, Kochert G (2002a) RFLP analysis of genetic variation in species of section Arachis, genus Arachis (Leguminosae). Euphytica 123:421–429

    Article  CAS  Google Scholar 

  • Gimenes M, Lopes C, Valls J (2002b) Genetic relationships among Arachis species based on AFLP. Genet Mol Biol 25:349–353

    Article  CAS  Google Scholar 

  • Guo BZ, Xu G, Cao YG, Holbrook CC, Lynch RE (2006) Identification and characterization of phospholipase D and its association with drought susceptibilities in peanut (Arachis hypogaea). Planta 223:512–520

    Article  PubMed  CAS  Google Scholar 

  • Halward T, Stalker H, LaRue E, Kochert G (1991) Genetic variation detectable with molecular markers among unadapted germ-plasm resources of cultivated peanut and related wild species. Genome 34:1013–1020

    CAS  Google Scholar 

  • Halward T, Stalker T, LaRue E, Kochert G (1992) Use of single-primer DNA amplifications in genetic studies of peanut (Arachis hypogaea L.). Plant Mol Biol 18:315–325

    Article  PubMed  CAS  Google Scholar 

  • Halward T, Stalker H, Kochert G (1993) Development of an RFLP linkage map in diploid peanut species. Theor Appl Genet 87:379–384

    Article  CAS  Google Scholar 

  • He G, Prakash C (1997) Identification of polymorphic DNA markers in cultivated peanut (Arachis hypogaea L.). Euphytica 97:143–149

    Article  CAS  Google Scholar 

  • He G, Prakash C (2001) Evaluation of genetic relationships among botanical varieties of cultivated peanut (Arachis hypogaea L.) using AFLP markers. Genet Res Crop Evol 48:347–352

    Article  Google Scholar 

  • He G, Meng R, Newman M, Gao G, Pittman R, Prakash C (2003) Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.). BMC Plant Biol 3:3

    Article  PubMed  Google Scholar 

  • He G, Meng R, Gao H, Guo B, Gao G, Newman M, Pittman RN, Prakash CS (2005) Simple sequence repeat markers for botanical varieties of cultivated peanut (Arachis hypogaea L.). Euphytica 142:131-136

    Google Scholar 

  • Herselman L (2003) Genetic variation among Southern African cultivated peanut (Arachis hypogaea L.) genotypes as revealed by AFLP analysis. Euphytica 133:319–327

    Article  CAS  Google Scholar 

  • Herselman L, Thwaites R, Kimmins FM, Courtois B, van der Merwe PJA, Seal SE (2004) Identification and mapping of AFLP markers linked to peanut (Arachis hypogaea L.) resistance to the aphid vector of groundnut rosette disease. Theor Appl Genet 109:1426–1433

    Article  PubMed  CAS  Google Scholar 

  • Higgins C, Hall R, Mitter N, Cruickshank A, Dietzgen R (2004) Peanut stripe potyvirus resistance in peanut (Arachis hypogaea L.) plants carrying viral coat protein gene sequences. Transgenic Res 13:59–67

    Article  PubMed  CAS  Google Scholar 

  • Hilu KW, Stalker HT (1995) Genetic relationships between peanut and wild species of Arachis sect arachis (Fabaceae) evidence from RAPDS. Plant Syst Evol 198:167–178

    Article  CAS  Google Scholar 

  • Holbrook CC, Stalker HT (2003) Peanut breeding and genetic resources. Plant Breed Rev 22:297–356

    Google Scholar 

  • Hopkins M, Casa A, Wang T, Mitchell S, Dean R, Kochert G, Kresovich S (1999) Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Sci 39:1243–1247

    Article  CAS  Google Scholar 

  • Horn MW, Woodard SL, Howard JA (2004) Plant molecular farming: systems and products. Plant Cell Rep 22:711–720

    Article  PubMed  CAS  Google Scholar 

  • Jayabalan N, Anthony P, Davey MR, Power JB, Lowe KC (2004) Hemoglobin promotes somatic embryogenesis in peanut cultures. Art Cells Blood Subs Immob Biotech 32:149–157

    Article  CAS  Google Scholar 

  • Jesubatham A, Burow M (2006) PeanutMap: an online genome database for comparative molecular maps of peanut. BMC Bioinformatics 7:375

    Article  PubMed  CAS  Google Scholar 

  • Joshi M, Niu C, Fleming G, Hazra S, Chu Y, Nairn CJ, Yang H, Ozias-Akins P (2005) Use of green fluorescent protein as a non-destructive marker for peanut genetic transformation. In Vitro Cell Dev Biol Plant 41:437–445

    Article  CAS  Google Scholar 

  • Jung S, Powell G, Moore K, Abbott A (2000) The high oleate trait in the cultivated peanut (Arachis hypogaea L.). II. Molecular basis and genetics of the trait. Mol Gen Genet 263:806–811

    Article  PubMed  CAS  Google Scholar 

  • Jung S, Tate PL, Horn R, Kochert G, Moore K, Abbott AG (2003) The phylogenetic relationship of possible progenitors of the cultivated peanut. J Hered 94:334–340

    Article  PubMed  CAS  Google Scholar 

  • Khandelwal A, Vally KJM, Geetha N, Venkatachalam P, Shaila MS, Lakshmi Sita G (2003) Engineering hemagglutinin (H) protein of rinderpest virus into peanut (Arachis hypogaea L.) as a possible source of vaccine. Plant Sci 165:77–84

    Article  CAS  Google Scholar 

  • Khandelwal A, Renukaradhya GJ, Rajasekhar M, Sita GL, Shaila MS (2004) Systemic and oral immunogenicity of hemagglutinin protein of rinderpest virus expressed by transgenic peanut plants in a mouse model. Virology 323:284–291

    Article  PubMed  CAS  Google Scholar 

  • Knauft D, Ozias-Akins P (1995) Recent methodologies for germplasm enhancement and breeding. In: Pattee HE, Stalker HT (eds) Advances in peanut science. American Peanut Research and Education Society, Stillwater, pp 54–94

    Google Scholar 

  • Kochert G, Halward T, Branch W, Simpson C (1991) RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet 81:565–570

    Article  CAS  Google Scholar 

  • Kochert G, Stalker H, Gimenes M, Galgaro L, Lopes C, Moore K (1996) RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am J Bot 83:1282–1291

    Article  CAS  Google Scholar 

  • Krishna GK, Zhang J, Burow M, Pittman RN, Delikostadinov SG, Lu Y, Puppala N (2004) Genetic diversity analysis in Valencia peanut (Arachis hypogaea L.) using microsatellite markers. Cell Molec Biol Lett 9:685–697

    CAS  Google Scholar 

  • Lanham P, Fennell S, Moss J, Powell W (1992) Detection of polymorphic loci in Arachis germplasm using random amplified polymorphic DNAs. Genome 35:885–889

    PubMed  CAS  Google Scholar 

  • Li Z, Jarret R, Demski J (1997) Engineered resistance to tomato spotted wilt virus in transgenic peanut expressing the viral nucleocapsid gene. Transgenic Res 6:297–305

    Article  CAS  Google Scholar 

  • Little EL, Magbanua ZV, Parrott WA (2000) A protocol for repetitive somatic embryogenesis from mature peanut epicotyls. Plant Cell Rep 19:351–357

    Article  CAS  Google Scholar 

  • Livingstone DM, Birch RG (1999) Efficient transformation and regeneration of diverse cultivars of peanut (Arachis hypogaea L.) by particle bombardment into embryogenic callus produced from mature seeds. Mol Breed 5:43–51

    Article  Google Scholar 

  • Livingstone DM, Hampton JL, Phipps PM, Grabau EA (2005) Enhancing resistance to Sclerotinia minor in peanut by expressing a barley oxalate oxidase gene. Plant Physiol 137:1354–1362

    Article  PubMed  CAS  Google Scholar 

  • Lopez Y, Nadaf H, Smith O, Connell J, Reddy A, Fritz A (2000) Isolation and characterization of the delta 12-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in Spanish market-type lines. Theor Appl Genet 101:1131–1138

    Article  CAS  Google Scholar 

  • Lopez Y, Nadaf H, Smith O, Simpson C, Fritz A (2002) Expressed variants of delta-12-fatty acid desaturase for the high oleate trait in Spanish market-type peanut lines. Mol Breed 9:183–192

    Article  CAS  Google Scholar 

  • Luo M, Dang P, Bausher MG, Holbrook CC, Lee RD, Lynch RE, Guo BZ (2005a) Identification of transcripts involved in resistance responses to leaf spot disease caused by Cercosporidium personatum in peanut (Arachis hypogaea). Phytopathology 95:381–387

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Dang P, Guo BZ, He G, Holbrook CC, Bausher MG, Lee RD (2005b) Generation of expressed sequence tags (ESTs) for gene discovery and marker development in cultivated peanut. Crop Sci 45:346–353

    Article  CAS  Google Scholar 

  • Luo M, Liang XQ, Dang P, Holbrook CC, Bausher MG, Lee RD, Guo BZ (2005c) Microarray-based screening of differentially expressed genes in peanut in response to Aspergillus parasiticus infection and drought stress. Plant Sci 169:695–703

    Article  CAS  Google Scholar 

  • Lynch R, Mack T (1995) Biological and biotechnological advances for insect management in peanut. In: Pattee H, Stalker H (eds) Advances in peanut science. American Peanut Research and Education Society, Stillwater, pp 95–159

    Google Scholar 

  • Lynch RE, Wilson DM (1991) Enhanced infection of peanut, Arachis hypogaea L., seeds with Aspergillus flavus group fungi due to external scarification of peanut pods by the lesser cornstalk borer, Elasmopalpus lignosellus (Zeller). Peanut Sci 18:110–115

    Google Scholar 

  • Magbanua Z, Wilde H, Roberts J, Chowdhury K, Abad J, Moyer J, Wetzstein H, Parrott W (2000) Field resistance to tomato spotted wilt virus in transgenic peanut (Arachis hypogaea L.) expressing an antisense nucleocapsid gene sequence. Mol Breed 6:227–236

    Article  CAS  Google Scholar 

  • Mason HS, Mullet JE (1990) Expression of two soybean vegetative storage protein genes during development and in response to water deficit, wounding, and jasmonic acid. Plant Cell 2:569–579

    Article  PubMed  CAS  Google Scholar 

  • McKently A, Moore G, Doostdar H, Niedz R (1995) Agrobacterium-mediated transformation of peanut (Arachis hypogaea L.) embryo axes and the development of transgenic plants. Plant Cell Rep 14:699–703

    Article  CAS  Google Scholar 

  • Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107:193–232

    Article  PubMed  CAS  Google Scholar 

  • Milla SR, Isleib TG, Stalker HT, Scoles GJ (2005) Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. Genome 48:1–11

    Article  PubMed  CAS  Google Scholar 

  • Moar W, Pusztai-Carey M, Mack T (1995) Toxicity of purified proteins and the HD-1 strain from Bacillus thuringiensis against lesser cornstalk borer (Lepidoptera: Pyralidae). J Econ Entomol 88:606–609

    CAS  Google Scholar 

  • Moretzsohn M, Hopkins M, Mitchell S, Kresovich S, Valls J, Ferreira M (2004) Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol 4:11

    Article  CAS  Google Scholar 

  • Moretzsohn MC, Leoi L, Proite K, Guimaraes PM, Leal-Bertioli SCM, Gimenes MA, Martins WS, Valls JFM, Grattapaglia D, Bertioli DJ (2005) A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet 111:1060–1071

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Olhoft PM, Flagel LE, Donovan CM, Somers DA (2003) Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 216:723–735

    PubMed  CAS  Google Scholar 

  • Ozias-Akins P, Gill R (2001) Progress in the development of tissue culture and transformation methods applicable to the production of transgenic peanut. Peanut Sci 28:123–131

    CAS  Google Scholar 

  • Ozias-Akins P, Anderson WF, Holbrook CC (1992) Somatic embryogenesis in Arachis hypogaea L.: genotype comparison. Plant Sci 83:103–111

    Article  Google Scholar 

  • Ozias-Akins P, Schnall JA, Anderson WF, Singsit C, Clemente TE, Adang MJ, Weissinger AK (1993) Regeneration of transgenic peanut plants from stably transformed embryogenic callus. Plant Sci 93:185–194

    Article  CAS  Google Scholar 

  • Ozias-Akins P, Yang H, Perry EAY, Niu C, Holbrook C, Lynch R (2002a) Transgenic peanut for preharvest aflatoxin reduction. Mycopathologia 155:98

    Google Scholar 

  • Ozias-Akins P, Yang H, Gill R, Fan H, Lynch RE (2002b) Reduction of aflatoxin contamination in peanut: a genetic engineering approach. ACS Symp Ser 829:151–160

    Article  CAS  Google Scholar 

  • Ozias-Akins P, Ramos ML, Chu Y (2006) Hypoallergenic foods beyond infant formulas. In: Maleki S, Burks AW, Helm RM (eds) Food allergy. ASM, Washington, D.C., pp 287–306

    Google Scholar 

  • Paik-Ro O, Smith R, Knauft D (1992) Restriction fragment length polymorphism evaluation of six peanut species within the Arachis section. Theor Appl Genet 84:201–208

    Article  CAS  Google Scholar 

  • Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A (2004) High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theor Appl Genet 108:1492–1502

    Article  PubMed  CAS  Google Scholar 

  • Proite K, Leal-Bertioli S, Bertioli D, Moretzsohn M, Silva F da, Martins N, Guimaraes P (2007) ESTs from a wild Arachis species for gene discovery and marker development. BMC Plant Biol 7:7

    Article  PubMed  CAS  Google Scholar 

  • Raina S, Rani V, Kojima T, Ogihara Y, Singh K, Devarumath R (2001) RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome 44:763–772

    Article  PubMed  CAS  Google Scholar 

  • Ramos M, Fleming G, Chu Y, Akiyama Y, Gallo M, Ozias-Akins P (2006) Chromosomal and phylogenetic context for conglutin genes in Arachis based on genomic sequence. Mol Gen Gen 275:578–592

    Article  CAS  Google Scholar 

  • Rohini VK, Rao KS (2000) Transformation of peanut (Arachis hypogaea L.): a non-tissue culture based approach for generating transgenic plants. Plant Sci 150:41–49

    Article  CAS  Google Scholar 

  • Rohini VK, Rao KS (2001) Transformation of peanut (Arachis hypogaea L.) with tobacco chitinase gene: variable response of transformants to leaf spot disease. Plant Sci 160:889–898

    Article  PubMed  CAS  Google Scholar 

  • Samoylov V, Tucker D, Parrott W (1998) Soybean [Glycine max (L.) Merill] embryogenic cultures: the role of sucrose and total nitrogen content on proliferation. In Vitro Cell Dev Biol 34:8–13

    Article  CAS  Google Scholar 

  • Seijo JG, Lavia GI, Fernandez A, Krapovickas A, Ducasse D, Moscone EA (2004) Physical mapping of the 5S and 18S-25S rRNA genes by FISH as evidence that Arachis duranensis and A. ipaensis are the wild diploid progenitors of A. hypogaea (Leguminosae). Am J Bot 91:1294–1303

    CAS  Google Scholar 

  • Sharma KK, Anjaiah V (2000) An efficient method for the production of transgenic plants of peanut (Arachis hypogaea L.) through Agrobacterium tumefaciens-mediated genetic transformation. Plant Sci 159:7–19

    Article  PubMed  CAS  Google Scholar 

  • Shou H, Frame B, Whitham S, Wang K (2004) Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Mol Breed 13:201–208

    Article  CAS  Google Scholar 

  • Simpson CE (2001) Use of wild Arachis species/introgression of genes into A. hypogaea L. Peanut Sci 28:114–116

    CAS  Google Scholar 

  • Simpson CE, Starr JL (2001) Registration of ‘COAN’ peanut. Crop Sci 41:918

    Article  Google Scholar 

  • Simpson CE, Krapovickas A, Valls JFM (2001) History of Arachis including evidence of A. hypogaea L. progenitors. Peanut Sci 28:78–80

    Google Scholar 

  • Simpson CE, Starr JL, Church GT, Burow MD, Paterson AH (2003) Registration of ‘NemaTAM’ peanut. Crop Sci 43:1561

    Article  Google Scholar 

  • Singh KP, Singh A, Raina SN, Singh AK, Ogihara Y (2002) Ribosomal DNA repeat unit polymorphism and heritability in peanut (Arachis hypogaea L.) accessions and related wild species. Euphytica 123:211–220

    Article  CAS  Google Scholar 

  • Singsit C, Adang MJ, Lynch RE, Anderson WF, Wang A, Cardineau G, Ozias-Akins P (1997) Expression of a Bacillus thuringiensis crylA(c) gene in transgenic peanut plants and its efficacy against lesser cornstalk borer. Transgenic Res 6:169–176

    Article  PubMed  CAS  Google Scholar 

  • Somers DA, Samac DA, Olhoft PM (2003) Recent advances in legume transformation. Plant Physiol 131:892–899

    Article  PubMed  CAS  Google Scholar 

  • Stalker HT, Mozingo LG (2001) Molecular markers of Arachis and marker-assisted selection. Peanut Sci 28:117–123

    Article  CAS  Google Scholar 

  • Stalker H, Simpson C (1995) Germplasm resources in Arachis. In: Pattee H, Stalker H (eds) Advances in peanut science. American Peanut Research and Education Society, Stillwater, OK, pp 14–53

    Google Scholar 

  • Subramanian V, Gurtu S, Nageswara Rao R, Nigam S (2000) Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (RAPD) assay. Genome 43:656–660

    Article  PubMed  CAS  Google Scholar 

  • Tallury SP, Hilu KW, Milla SR, Friend SA, Alsaghir M, Stalker HT, Quandt D (2005) Genomic affinities in Arachis section Arachis (Fabaceae): molecular and cytogenetic evidence. Theor Appl Genet 111:1229–1237

    Article  PubMed  CAS  Google Scholar 

  • Venkatachalam P, Geetha N, Jayabalan N, Sita S, Sita L (1998) Agrobacterium-mediated genetic transformation of groundnut (Arachis hypogaea L): an assessment of factors affecting regeneration of transgenic plants. Plant Sci 111:565–572

    CAS  Google Scholar 

  • Venkatachalam P, Geetha N, Shandelwal A, Shaila MS, Sita GL (2000) Agrobacterium-mediated genetic transformation and regeneration of transgenic plants from cotyledon explants of groundnut (Arachis hypogaea L.) via somatic embryogenesis. Curr Sci 78:1130–1136

    CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP – A new technique for DNA-fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wang A, Fan H, Singsit C, Ozias-Akins P (1998) Transformation of peanut with a soybean vspB promoter-uidA chimeric gene I. Optimization of a transformation system and analysis of GUS expression in primary transgenic tissues and plants. Physiol Plant 102:38–48

    Article  CAS  Google Scholar 

  • Weber JL (1990) Informativeness of human (DC-DA)n.(DG-DT)n polymorphisms. Genomics 7:524–530

    Article  PubMed  CAS  Google Scholar 

  • Weissinger A, Wu M, Liu Y-S, Ingram K, Rajasekaran K, Cleveland T (2002) Development of transgenic peanut with enhanced resistance against preharvest aflatoxin contamination. Mycopathologia 155:97

    Google Scholar 

  • Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218

    Article  PubMed  CAS  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic-markers. Nucleic Acids Res 18:6531–6535

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Singsit C, Wang A, Gonsalves D, Ozias-Akins P (1998) Transgenic peanut plants containing a nucleocapsid protein gene of tomato spotted wilt virus show divergent levels of gene expression. Plant Cell Rep 17:693–699

    Article  CAS  Google Scholar 

  • Yang HY, Nairn J, Ozias-Akins P (2003) Transformation of peanut using a modified bacterial mercuric ion reductase gene driven by an actin promoter from Arabidopsis thaliana. J Plant Physiol 160:945–952

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Ozias-Akins P, Culbreath A, Gorbet D, Weeks J, Mandal B, Pappu H (2004) Field evaluation of Tomato spotted wilt virus resistance in transgenic peanut (Arachis hypogaea). Plant Dis 88:259–264

    Article  Google Scholar 

  • Yuksel B, Paterson AH (2005) Construction and characterization of a peanut HindIII BAC library. Theor Appl Genet 111:630–639

    Article  PubMed  CAS  Google Scholar 

  • Yuksel B, Bowers JE, Estill J, Goff L, Lemke C, Paterson AH (2005a) Exploratory integration of peanut genetic and physical maps and possible contributions from Arabidopsis. Theor Appl Genet 111:87–94

    Article  PubMed  CAS  Google Scholar 

  • Yuksel B, Estill J, Schulze S, Paterson A (2005b) Organization and evolution of resistance gene analogs in peanut. Mol Gen Gen 274:248–263

    Article  CAS  Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain-reaction amplification. Genomics 20:176–183

    Article  PubMed  CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Peanut. In: Pua, EC., Davey, M. (eds) Transgenic Crops VI. Biotechnology in Agriculture and Forestry, vol 61. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71711-9_5

Download citation

Publish with us

Policies and ethics