Skip to main content

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 61))

  • 1203 Accesses

Abstract

White lupins (Lupinus albus) and narrow leaf lupins (L. angustifolius) are established as commercial crops, mainly in parts of Europe and Australia. Successful genetic modification (GM) was achieved with L. angustifolius, using gene transfer by Agrobacterium tumefaciens to embryonic axes, followed by shoot organogenesis to produce fertile, stably transformed GM plants. Selectable marker-free, GM narrow leaf lupins were produced by transformation with two distinct T-DNA cassettes. To date, L. albus, like many grain legumes, is recalcitrant to genetic modification. GM traits transferred to L. angustifolius are tolerance to the herbicide, Basta, and improved seed protein amino acid balance for animal nutrition, although commercial GM varieties are yet to be released. Resistance to fungal and viral pathogens, along with manipulation of hormone levels to improve seed set, represent the highest priority targets for current work in lupin biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atkins CA, Smith PMC, Gupta S, Jones MGK, Caligari PDS (1998) Genetics, cytology and biotechnology. In: Gladstones JS, Atkins CA, Hamblin J (eds) Lupins as crop plants: biology, production and utilization. CAB International, Wallingford, pp 67–92

    Google Scholar 

  • Babaoglu M, McCabe MS, Power JB, Davey MR (2000) Agrobacterium-mediated transformation of Lupinus mutabilis L. using shoot apical explants. Acta Physiol Plant 22:111–119

    Article  CAS  Google Scholar 

  • Babaoglu M, Davey MR, Power JB, Sporer F, Wink M (2004) Transformed roots of Lupinus mutabilis: induction, culture and isoflavone biosynthesis. Plant Cell Tissue Organ Cult 78:29–36

    Article  CAS  Google Scholar 

  • Booth MA, Allan GL, Frances J, Parkinson S (2001) Replacement of fish meal in diets for Australian silver perch, Bidyanus bidyanus IV. Effects of dehulling and protein concentration on digestibility of grain legumes. Aquaculture 196:67–85

    Article  Google Scholar 

  • Cowling WA, Huyghe C, Swiecicki W (1998) Lupin breeding. In: Gladstones JS, Atkins CA, Hamblin J (eds) Lupins as crop plants: biology, production and utilization. CAB International, Wallingford, pp 93–120

    Google Scholar 

  • Daza A, Chamber MA (1993) Plant regeneration from hypocotyl segments of Lupinus luteus L. cv Aurea. Plant Cell Tissue Organ Cult 34:303–305

    Article  CAS  Google Scholar 

  • Gladstones JS (1998) Distribution, origin, taxonomy, history and importance. In: Gladstones JS, Atkins CA, Hamblin J (eds) Lupins as crop plants: biology, production and utilization. CAB International, Wallingford, pp 1–39

    Google Scholar 

  • Glencross B, Evans D, Hawkins W, Jones B (2004) Evaluation of dietary inclusion of yellow lupin (Lupinus luteus) kernel meal on the growth, feed utilisation and tissue histology of rainbow trout (Oncorhynchus mykiss). Aquaculture 235:411–422

    Article  Google Scholar 

  • Hondelmann W (1984) The lupin – ancient and modern crop plant. Theor Appl Genet 68:1–9

    Article  Google Scholar 

  • Li H, Wylie SJ, Jones MGK (2000) Transgenic yellow lupin (Lupinus luteus). Plant Cell Rep 19:634–637

    Article  CAS  Google Scholar 

  • McNabb WC, Spencer D, Higgins TJ, Barry TN (1994) In vitro rates of rumen proteolysis of ribulose-1,5-bisphosphate carboxylase (Rubisco) from lucerne leaves, and of ovalbumin, vicilin and sunflower albumin-8 storage proteins. J Sci Food Agric 64:53–61

    Article  CAS  Google Scholar 

  • Moir RJ (1970) Implications of the N:S ratio and differential recycling. In: Muth OH, Oldfield JE (eds) Symposium: sulfur in nutrition. AVI, Westport, pp 165–181

    Google Scholar 

  • Molvig L, Tabe LM, Eggum BO, Moore AE, Craig S, Spencer D, Higgins TJV (1997) Enhanced methionine levels and increased nutritive value of seeds of transgenic lupins (Lupinus angustifolius L) expressing a sunflower seed albumin gene. Proc Natl Acad Sci USA 94:8393–8398

    Article  PubMed  CAS  Google Scholar 

  • Molvig L, Morton RL, Tabe LM, Higgins TJV (2002) Generation of selectable marker-free transgenic lupins (Lupinus angustifolius L) using a twin T-DNA binary vector. In: IAPTCB (ed) The importance of plant tissue culture and biotechnology in plant sciences. [Proceedings of the seventh meeting of the international association for plant tissue culture and biotechnology (Australian region)] University of New England, Brisbane, pp 137–144

    Google Scholar 

  • Mulin M, Bellio-Spataru A (2000) Organogenesis from hypocotyl thin cell layers of Lupinus mutabilis and Lupinus albus. Plant Growth Regul 30:177–183

    Article  CAS  Google Scholar 

  • Nadolska-Orczyk A (1992) Somatic embryogenesis of agriculturally important lupin species (Lupinus angustifolius, L albus, L mutabilis). Plant Cell Tissue Organ Cult 28:19–25

    Article  CAS  Google Scholar 

  • Pannell DJ (1998) Economic assessment of the role and value of lupins in the farming system. In: Gladstones JS, Atkins CA, Hamblin J (eds) Lupins as crop plants: biology, production and utilization. CAB International, Wallingford, pp 339–351

    Google Scholar 

  • Papineau J, Huyghe C (1989) Collecting white lupin in the Azores. FAO/BPGR Plant Genetic Resour Newsl 88/89:77–78

    Google Scholar 

  • Phoplonker MA, Caligari PDS (1993) Cultural manipulations affecting callus formation from seedling explants of the pearl lupin (Lupinus mutabilis sweet). Ann Appl Biol 123:419–432

    Article  Google Scholar 

  • Pigeaire A, Abernethy D, Smith PM, Simpson K, Fletcher N, Lu CY, Atkins CA, Cornish E (1997) Transformation of a grain legume (Lupinus angustifolius L.) via Agrobacterium tumefaciens-mediated gene transfer to shoot apices. Mol Breed 3:341–349

    Article  CAS  Google Scholar 

  • Ravindran V, Tabe LM, Molvig L, Higgins TJV, Bryden WL (2002) Nutritional evaluation of transgenic high-methionine lupins (Lupinus angustifolius L) with broiler chickens. J Sci Food Agric 82:280–285

    Article  CAS  Google Scholar 

  • Rybczynski JJ, Podyma E (1993) Preliminary studies of plant regeneration via somatic embryogenesis induced on immature cotyledons of white lupin (Lupinus albus L). Genet Pol 34:249–257

    Google Scholar 

  • Sator C (1985) Studies on shoot regeneration of lupins (Lupinus L.). Plant Cell Rep 4:126–128

    Article  Google Scholar 

  • Schmidt CP, Pannell DJ (1996) The role and value of herbicide-resistant lupins in Western Australian agriculture. Crop Prot 15:539–548

    Article  Google Scholar 

  • Sroga GE (1987) Plant regeneration of two Lupinus species from callus cultures via organogenesis. Plant Sci 51:245–249

    Article  Google Scholar 

  • Sweetingham MW, Jones RAC, Brown AGP (1998) Diseases and pests. In: Gladstones JS, Atkins CA, Hamblin J (eds) Lupins as crop plants: biology, production and utilization. CAB International, Wallingford, pp 263–289

    Google Scholar 

  • Tabe L, Higgins TJV (1998) Engineering plant protein composition for improved nutrition. Trends Plant Sci 3:282–286

    Article  Google Scholar 

  • Tepfer M (2002) Risk assessment of virus-resistant transgenic plants. Annu Rev Phytopathol 40:467–491

    Article  PubMed  CAS  Google Scholar 

  • White CL, Tabe LM, Dove H, Hamblin J, Young P, Phillips N, Taylor R, Gulati S, Ashes J, Higgins TJV (2001) Increased efficiency of wool growth and live weight gain in merino sheep fed transgenic lupin seed containing sunflower albumin. J Sci Food Agric 81:147–154

    Article  CAS  Google Scholar 

  • Yang HA, Sweetingham MW, Cowling WA (1996) The leaf infection process and resistance to Pleiochaeta setosa in three lupin species. Aust J Agric Res 47:787–799

    Article  Google Scholar 

  • Yang H, Boersma JG, You MP, Buirchell BJ, Sweetingham MW (2004) Development and implementation of a sequence-specific PCR marker linked to a gene conferring resistance to anthracnose disease in narrow-leafed lupin (Lupinus angustifolius L.). Mol Breed 14:145–151

    Article  CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Lupins. In: Pua, EC., Davey, M. (eds) Transgenic Crops VI. Biotechnology in Agriculture and Forestry, vol 61. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71711-9_22

Download citation

Publish with us

Policies and ethics