Skip to main content

Orchids

  • Chapter

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 61))

Abstract

Orchids are members of the Orchidiaceae, one of the largest families of flowering plants. It is of importance and practical value for the orchid industry to continuously generate novel varieties with improved floral characters to satisfy human fancy and desire for something new. A typical trend of current orchid biotechnology is the application of molecular techniques to orchid improvement, which is able to mark and achieve desirable traits by genetic engineering of specific genes into orchids. The core component of molecular breeding of orchids is to create efficient and reproducible orchid gene transformation systems. In this chapter, we summarize the methodology of genetic transformation of orchids, discuss the various factors affecting the transformation process and briefly introduce the application of some interesting genes in genetic engineering of orchids.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angenon G, Dillen W, Montagu MV (1994) Antibiotic resistance markers for plant transformation. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual II. Kluwer, Dordrecht, C1:1–13

    Google Scholar 

  • Anzai H, Tanaka M (2001) Transgenic Phalaenopsis (a moth orchid). In: Bajaj YPS (ed) Transgenic crops III. (Biotechnology in agriculture and forestry, vol 48) Springer, Berlin Heidelberg New York, pp 249–264

    Google Scholar 

  • Anzai H, Ishii Y, Schichinohe M, Katsumata K, Nojiri C, Morikawa H, Tanaka M (1996) Transformation of Phalaenopsis by particle bombardment. Plant Tissue Cult Lett 13:265–271

    CAS  Google Scholar 

  • Belarmino MM, Mii M (2000) Agrobacterium-mediated genetic transformation of a Phalaenopsis orchid. Plant Cell Rep 19:435–442

    Article  CAS  Google Scholar 

  • Binns AN, Thomashow MF (1988) Cell biology of Agrobacterium infection and transformation of plants. Annu Rev Microbiol 42:575–606

    Article  CAS  Google Scholar 

  • Boase MR, Peters TA, Spencer MA, Bendall MJ (2001) Factors affecting transient expression of the GUS A reporter transgene in Cymbidium protocorm-like bodies transformed biolistically via a particle inflow gun. Tissue culture and biotechnology in New Zealand. Crop Food Res Rep 16:47

    Google Scholar 

  • Chang C, Chang WC (1998) Plant regeneration from callus culture of Cymbidium ensifolium var. misericors. Plant Cell Rep 17:251–255

    Article  CAS  Google Scholar 

  • Chang C, Chen YC, Hsu YH, Wu JT, Hu CC, Chang WC, Lin NS (2005) Transgenic resistance to Cymbidium mosaic virus in Dendrobium expressing the viral capsid protein gene. Transgenic Res 14:41–46

    Article  PubMed  CAS  Google Scholar 

  • Chen WH, Chen TM, Fu YM, Hsieh RM, Chen WS (1998) Studies on somaclonal variation in Phalaenopsis. Plant Cell Rep 18:7–13

    Article  Google Scholar 

  • Chia TF (1999) DNA technology and genetic engineering of orchids. Proc Asia Pac Orchid Conf 6:1–4

    Google Scholar 

  • Chia TF, Chan YS, Chua NH (1990) Large-scale screening of Cymbidium mosaic and Odontoglossum ringspot viruses in cultivated orchids by nucleic acid spot hybridization. In: Bonham OG, Kernohan J (eds) Proceedings of the 13th world orchid conference. WOC Proceedings Trust, Auckland, p. 284

    Google Scholar 

  • Chia TF, Chan YS, Chua NH (1994) The firefly luciferase gene as a non-invasive reporter for Dendrobium transformation. Plant J 6:441–446

    Article  CAS  Google Scholar 

  • Chia TF, Lim AYH, Luan Y, Ng I (2001) Transgenic Dendrobium (orchid). In: Bajaj YPS (ed) Transgenic crops III. (Biotechnology in agriculture and forestry, vol 48) Springer, Berlin Heidelberg New York, pp 95–106

    Google Scholar 

  • Christou P (1994) Gene transfer to plants via particle bombardment. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual II. Kluwer, Dordrecht, A2:1–15

    Google Scholar 

  • De Block M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gossele V, Movva NR, Thompson C, Van Montagu M, Leemans J (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6:2513–2518

    PubMed  CAS  Google Scholar 

  • D’Halluin K, De Block M, Denecke J, Janssens J, Leemans J, Reynaerts A, Botterman J (1992) The bar gene as selectable and screenable marker in plant engineering. Methods Enzymol 216:415–426

    PubMed  CAS  Google Scholar 

  • Dressler RL (1990) The orchids: natural history and classification. Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Gelvin SB, Liu CN (1994) Genetic manipulation of Agrobacterium tumefaciens strains to improve transformation of recalcitrant plants species. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual II. Kluwer, Dordrecht, B4:1–13

    Google Scholar 

  • Goh CJ, Arditti J (1985) Orchidaceae. In: Halevy AH (ed) Handbook of flowering. CRC, Boca Raton, pp 309–336

    Google Scholar 

  • Hellens R, Mullineaux P, Klee H (2000) A guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5:446–451

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of T-DNA. Plant J 6:271–282

    Article  PubMed  CAS  Google Scholar 

  • Hooykaas PJJ, Schilperoort RA (1992) Agrobacterium and plant genetic engineering. Plant Mol Biol 19:15–38

    Article  PubMed  CAS  Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency of transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    Article  PubMed  CAS  Google Scholar 

  • Klein T, Wolf E, Wu R, Sanford J (1987) High velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70–73

    Article  CAS  Google Scholar 

  • Knapp JE, Kausch AP, Chandlee JM (2000) Transformation of three genera of orchid using the bar gene as a selectable marker. Plant Cell Rep 19:893–898

    Article  CAS  Google Scholar 

  • Kuehnle AR (1997) Molecular biology of orchids. In: Arditti J, Pridgeon AM (eds) Orchid biology: reviews and perspectives VII. Kluwer, Dordrecht, pp 75–115

    Google Scholar 

  • Kuehnle AR, Sugii N (1992) Transformation of Dendrobium orchid using particle bombardment of protocorms. Plant Cell Rep 11:484–488

    CAS  Google Scholar 

  • Liau CH, You SJ, Prasad V, Hsiao HH, Lu JC, Yang NS, Chan MT (2003) Agrobacterium tumefaciens-mediated transformation of an Oncidium orchid. Plant Cell Rep 21:993–998

    Article  PubMed  CAS  Google Scholar 

  • Maughan SC, Cobbett CS (2003) Methionine sulfoximine, an alternative selection for the bar marker in plants. J Biotechnol 102:125–128

    Article  PubMed  CAS  Google Scholar 

  • Men S, Ming X, Wang Y, Liu R, Wei C, Li Y (2003a) Genetic transformation of two species of orchid by biolistic bombardment. Plant Cell Rep 21:592–598

    PubMed  CAS  Google Scholar 

  • Men S, Ming X, Liu R, Wei C, Li Y (2003b) Agrobacterium-medium genetic transformation of a Dendrobium orchid. Plant Cell Tissue Organ Cult 75:63–71

    Article  CAS  Google Scholar 

  • Morel G (1960) Producing virus-free Cymbidiums. Am Orchid Soc Bull 29:495–497

    Google Scholar 

  • Mudalige RG, Kuehnle AR (2004) Orchid biotechnology in production and improvement. HortScience 39:11–17

    Google Scholar 

  • Nan GL, Kuehnle AR (1995) Factors affecting gene delivery by particle bombardment of Dendrobium orchids. In Vitro Cell Dev Biol 31:131–136

    Article  Google Scholar 

  • Nan GL, Tang CS, Kuehnle AR, Kado CI (1997) Dendrobium orchids contain an inducer of Agrobacterium virulence genes. Physiol Mol Plant Pathol 51:391–399

    Article  CAS  Google Scholar 

  • Nan GL, Kuehnle AR, Kado CI (1998) Transgenic Dendrobium orchid through Agrobacterium-mediated transformation. Malay Orchid Rev 32:93–96

    Google Scholar 

  • Park SY, Kakuta S, Kano A, Okabe M (1996) Efficient propagation of protocorm-like bodies of Phalaenopsis in liquid medium. Plant Cell Tissue Organ Cult 45:79–85

    Article  Google Scholar 

  • Park SY, Murthy HN, Paek KY (2000) Mass multiplication of protocrom-like bodies (PLBs) using bioreactor system and subsequent plant regeneration in Phalaenopsis. Plant Cell Tissue Organ Cult 63:67–72

    Article  Google Scholar 

  • Park SY, Yeung EC, Chakrabarty D, Paek KY (2002) An efficient direct induction of protocorm-like bodies from leaf subepidermal cells of Doritaenopsis hybrid using thin-section culture. Plant Cell Rep 21:46–51

    Article  CAS  Google Scholar 

  • Peters TA, Boase MR, Nielsen KM, Spencer MA, Lewis DH (2001) Promoter expression studies in Cymbidium petal tissue using biolistic-mediated transformation. Tissue culture and biotechnology in New Zealand. Crop Food Res Rep 16:58

    Google Scholar 

  • Sanford JC, Devit MJ, Russell JA, Smith FD, Harpending PR, Roy MK, Johnston SA (1991) An improved, helium driven biolistic device. Technique 3:3–16

    CAS  Google Scholar 

  • Sanford JC, Smith FD, Russell JA (1993) Optimizing the biolistic process for different biological applications. Methods Enzymol 217:483–509

    Article  PubMed  CAS  Google Scholar 

  • Stachel SE, Nester EW, Zambryski PC (1986) A plant cell factor induces Agrobacterium tumefaciens vir gene expression. Proc Natl Acad Sci USA 83:379–383

    Article  PubMed  CAS  Google Scholar 

  • Suzuki S, Supaibulwatana K, Mii M, Nakano M (2001) Production of transgenic plants of liliaceous ornamental plant Agapanthus praecox ssp. orientalis (Leighton) Leighton via Agrobacterium-mediated transformation of embryogenic calli. Plant Sci 161:89–97

    Article  CAS  Google Scholar 

  • Xu Y, Teo LL, Zhou J, Kumar PP, Yu H (2006) Floral organ identity genes in the orchid Dendrobium crumenatum. Plant J 46:54–68

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Lee H, Shin DH, Oh SK, Seon JH, Paek KY, Han K (1999) Genetic transformation of Cymbidium orchid by particle bombardment. Plant Cell Rep 18:978–984

    Article  CAS  Google Scholar 

  • Yang SH, Yu H, Goh CJ (2003) Functional characterisation of a cytokinin oxidase gene DSCKX1 in Dendrobium orchid. Plant Mol Biol 51:237–248

    Article  PubMed  CAS  Google Scholar 

  • You SJ, Liau CH, Huang HE, Feng TY, Prasad V, Hsiao HH, Lu JC, Chan MT (2003) Sweet pepper ferredoxin-like protein (pflp) gene as a novel selection marker for orchid transformation. Planta 217:60–65

    PubMed  CAS  Google Scholar 

  • Yu H, Goh CJ (2000) Identification and characterization of three orchid MADS-box genes of the AP1/AGL9 subfamily during floral transition. Plant Physiol 123:1325–1336

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Yang SH, Goh CJ (2000) DOH1, a class 1 knox gene, is required for maintenance of the basic plant architecture and floral transition in orchid. Plant Cell 12:2143–2160

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Yang SH, Goh CJ (2001) Agrobacterium-mediated transformation of a Dendrobium orchid with the class 1 knox gene DOH1. Plant Cell Rep 20:301–305

    Article  CAS  Google Scholar 

  • Yu H, Yang SH, Goh CJ (2002) Spatial and temporal expression of the orchid floral homeotic gene DOMADS1 is mediated by its upstream regulatory regions. Plant Mol Biol 49:225–237

    Article  PubMed  CAS  Google Scholar 

  • Yu Z, Chen M, Nie L, Lu H, Ming X, Zheng H, Qu LJ, Chen Z (1999) Recovery of transgenic orchid plants with hygromycin selection by particle bombardment. Plant Cell Tissue Organ Cult 58:87–92

    Article  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Orchids. In: Pua, EC., Davey, M. (eds) Transgenic Crops VI. Biotechnology in Agriculture and Forestry, vol 61. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71711-9_15

Download citation

Publish with us

Policies and ethics