Skip to main content

Simultaneous Tuning of Hyperparameter and Parameter for Support Vector Machines

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4426))

Included in the following conference series:

Abstract

Automatic tuning of hyperparameter and parameter is an essential ingredient and important process for learning and applying Support Vector Machines (SVM). Previous tuning methods choose hyperparameter and parameter separately in different iteration processes, and usually search exhaustively in parameter spaces. In this paper we propose and implement a new tuning algorithm that chooses hyperparameter and parameter for SVM simultaneously and search the parameter space efficiently with a deliberate initialization of a pair of starting points. First we derive an approximate but effective radius margin bound for soft margin SVM. Then we combine multiparameters of SVM into one vector, converting the two separate tuning processes into one optimization problem. Further we discuss the implementation issue about the new tuning algorithm, and that of choosing initial points for iteration. Finally we compare the new tuning algorithm with old gradient based method and cross validation on five benchmark data sets. The experimental results demonstrate that the new tuning algorithm is effective, and usually outperforms those classical tuning algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anguita, D., et al.: Theoretical and Practical Model Selection Methods for Support Vector Classifiers. In: Wang, L. (ed.) Support Vector Machines: Theory and Applications. Studies in Fuzziness and Soft Computing, pp. 159–181. Springer, Heidelberg (2005)

    Google Scholar 

  2. Ayat, N., Cheriet, M., Suen, C.: Automatic model selection for the optimization of the SVM kernels. Pattern Recognition Journal (2005), Avaliable at http://www.livia.etsmtl.ca/publications/2005/Ayat_pr2005.pdf

  3. Chapelle, O., Vapnik, V.: Model Selection for Support Vector Machines. In: Advances in Neural Information Processing Systems, vol. 12, MIT Press, Cambridge (1999)

    Google Scholar 

  4. Charles, A.M., Pontil, M.: Learning the kernel function via regularization. Journal of Machine Learing Reasearch 6, 1099–1125 (2005)

    Google Scholar 

  5. Frauke, F., Christian, I.: Evolutionary tuning of multiple SVM parameters. Neurocomputing 64(1-4), 107–117 (2005), http://dx.doi.org/10.1016/j.neucom.2004.11.022

    Google Scholar 

  6. Soares, C., Brazdil, P.B.: A meta-learning method to select the kernel width in support vector regression. Machine Learning 54, 195–209 (2004)

    Article  MATH  Google Scholar 

  7. Chapelle, O., et al.: Choosing multiple parameters for support vector machines. Machine Learning 46, 131–159 (2002)

    Article  MATH  Google Scholar 

  8. Keerthi, S.S.: Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms. IEEE Transactions on Neural Networks 13(5), 1225–1229 (2002)

    Article  Google Scholar 

  9. McCormick, G.P.: The projective SUMT method for convex programming. Math. Oper. Res. 14, 203–223 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Davidon, W.: Variable metric algorithms for minimization. Technical Report ANL-5990, Argonne National Lab (1959)

    Google Scholar 

  11. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

  12. Burges, C.J.C.: A tutorial on support vector machine for pattern recgnition. Data Mining and Knowledge Discovery 2, 121–167 (1998)

    Article  Google Scholar 

  13. Cristianini, N., Campbell, C., Shawe-Taylor, J.: Dynamically adapting kernel in support vector machines. In: Advances in Neural Information Processing Systems, vol. 11, pp. 204–210 (1998)

    Google Scholar 

  14. Shölkopf, B., et al.: Kernel-dependent support vector error bounds. Artifical Neural Networks 7, 103–108 (1999)

    Google Scholar 

  15. Chung, K.M., et al.: Radius margin bounds for support vector machines with RBF kernel. Neural Comput. 15, 2643–2681 (2003)

    Article  MATH  Google Scholar 

  16. Newman, D., et al.: UCI Repository of Machine Learning Databases. Dept. of Information and Computer Sciences, University of California, Irvine (1998)

    Google Scholar 

  17. Platt, J.: Fast training of support vector machines using sequential minimal optimization. In: Advances in Kernel Methods - Support Vector Learning, MIT Press, Cambridge (1998)

    Google Scholar 

  18. King, R.: Statlog Databases. Dept. of Statist. Modeling Scie, University of Strathclyde, Glasgow, U.K. (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Zhi-Hua Zhou Hang Li Qiang Yang

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Liao, S., Jia, L. (2007). Simultaneous Tuning of Hyperparameter and Parameter for Support Vector Machines. In: Zhou, ZH., Li, H., Yang, Q. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2007. Lecture Notes in Computer Science(), vol 4426. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71701-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71701-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71700-3

  • Online ISBN: 978-3-540-71701-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics