Skip to main content

Free Energy Estimates of All-Atom Protein Structures Using Generalized Belief Propagation

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4453))

Abstract

We present a technique for approximating the free energy of protein structures using Generalized Belief Propagation (GBP). The accuracy and utility of these estimates are then demonstrated in two different application domains. First, we show that the entropy component of our free energy estimates can be useful in distinguishing native protein structures from decoys — structures with similar internal energy to that of the native structure, but otherwise incorrect. Our method is able to correctly identify the native fold from among a set of decoys with 87.5% accuracy over a total of 48 different immunoglobin folds. The remaining 12.5% of native structures are ranked among the top 4 of all structures. Second, we show that our estimates of ΔΔ G upon mutation upon mutation for three different data sets have linear correlations between 0.63-0.70 with experimental values and statistically significant p-values. Together, these results suggests that GBP is an effective means for computing free energy in all-atom models of protein structures. GBP is also efficient, taking a few minutes to run on a typical sized protein, further suggesting that GBP may be an attractive alternative to more costly molecular dynamic simulations for some tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aji, S.M., McEliece, R.J.: The generalized distributive law and free energy minimization. In: Proceedings of the 39th Allerton Conference on Communication, Control and Computing, pp. 459–467 (2003)

    Google Scholar 

  2. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The Protein Data Bank. Nucl. Acids Res. 28, 235–242 (2000)

    Article  Google Scholar 

  3. Betancourt, M.R., Thirumalai, D.: Pair potentials for protein folding: choice of reference states and sensitivity of predicted native states to variations in the interaction schemes. Protein Science 8, 361–369 (1999)

    Google Scholar 

  4. Bethe, H.A.: Statistical theory of superlattices. Proc. Roy. Soc. London A 150, 552–575 (1935)

    Article  MATH  Google Scholar 

  5. Brooks, B.R., Bruccoleri, B.D., Olafson, D.J., States, S., Swaminathan, S., Karplus, M.: CHARMM: A program for macromolecular energy minimization and dynamics calculations. Journal of Comp. Chem. 4, 187–217 (1983)

    Article  Google Scholar 

  6. Canutescu, A., Shelenkov, A.A., Dunbrack Jr., R.L.: A graph theory algorithm for protein side-chain prediction. Protein Science 12, 2001–2014 (2003)

    Article  Google Scholar 

  7. Carter Jr., C.W., LeFebvre, B.C., Cammer, S.A., Tropsha, A., Edgell, M.H.: Four-body potentials reveal protein-specific correlations to stability changes caused by hydrophobic core mutations. Journal of Mol. Bio. 311, 625–638 (2001)

    Article  Google Scholar 

  8. Chu, W., Ghahramani, Z., Wild, D.: A graphical model for protein secondary structure prediction. In: Proc. 21st Ann. Intl. Conf. on Machine Learning (ICML), Banff, Canada (2004)

    Google Scholar 

  9. Protein Structure Initiative. Report on the nigms workshop on high accuracy comparative modeling (2003), http://archive.nigms.nih.gov/psi/reports/comparative_modeling.html

  10. Karplus, K., Karchin, R., Draper, J., Casper, J. (Mandel-Gutfreund), Y., Diekhans, M., Hughey, R.: Combining local-structure, fold-recognition, and new-fold methods for protein structure prediction. Proteins 53, 491–496 (2003)

    Article  Google Scholar 

  11. Kikuchi, R.: A theory of cooperative phenomena. Phys. Rev. 81, 988–1003 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  12. Koehl, P., Delarue, M.: Application of a self-consistent mean field theory to predict protein side-chains conformation and estimate their conformational entropy. Journal of Mol. Bio., 249–275 (1994)

    Google Scholar 

  13. Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M.: PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291 (1993)

    Article  Google Scholar 

  14. Lee, C.: Predicting protein mutant energetics by self-consistent ensemble optimization. Journal of Mol. Bio. 236, 918–939 (1994)

    Article  Google Scholar 

  15. Lee, C., Levitt, M.: Accurate prediction of the stability and activity effects of site-directed mutagenesis on a protein core. Nature 352, 448–451 (1991)

    Article  Google Scholar 

  16. Lilien, R., Stevens, B., Anderson, A., Donald, B.R.: A Novel Ensemble-Based Scoring and Search Algorithm for Protein Redesign, and its Application to Modify the Substrate Specificity of the Gramicidin Synthetase A Phenylalanine Adenylation Enzyme. J. Comp Biol. 12(6-7), 740–761 (2005)

    Article  Google Scholar 

  17. Liu, Y., Carbonell, J., Weigele, P., Gopalakrishna, V.: Segmentation conditional random fields (SCRFs): A new approach for protein fold recognition. In: Proc. of the 9th Ann. Intl. Conf. on Comput. Biol (RECOMB), Boston, MA, May 14-18, pp. 408–422 (2005)

    Google Scholar 

  18. Marti-Renom, M.A., Stuart, A., Fiser, A., Sanchez, R., Melo, F., Sali, A.: Comparative Protien Structure Modeling of Genes and Genomes. Ann. Rev. Biophys. Biomol. Struct. 29, 291–325 (2000)

    Article  Google Scholar 

  19. Kumar, M.D., Bava, K.A., Gromiha, M.M., Parabakaran, P., Kitajima, K., Uedaira, H., Sarai, A.: ProTherm and ProNIT: thermodynamic databases for proteins and protein-nucleic acid interactions. Nuleic Acids Res. 34(Database issue), D204–206 (2006)

    Article  Google Scholar 

  20. Minka, T.: Divergence measures and message passing. Microsoft Technical Report (2005)

    Google Scholar 

  21. Moreland, J.L., Gramada, A., Buzko, O.V., Zhang, Q., Bourne, P.E.: The Molecular Biology Toolkit (MBT): A Modular Platform for Developing Molecular Visualization Applications. BMC Bioinformatics 6 (2005)

    Google Scholar 

  22. Morita, T.: Cluster variation method for non-uniform Ising and Heisenberg models and spin-pair correlation function. Prog. Theor. Phys. 85, 243 (1991)

    Article  Google Scholar 

  23. Morita, T., Suzuki, T.M., Wada, K., Kaburagi, M.: Foundations and applications of cluster variation method and path probability method. Prog. Theor. Phys. Supplement 115 (1994)

    Google Scholar 

  24. Pelizzola, A.: Cluster variation method in statistical physics and probabilistic graphical models. J. phys. A: math. gen. 38, R309–R339 (2005)

    Article  MathSciNet  Google Scholar 

  25. Rohl, C.A., Strauss, C.E., Misura, K.M., Baker, D.: Protein structure prediction using Rosetta. Methods Enzymol. 383, 66–93 (2004)

    Google Scholar 

  26. Samudrala, R.: Decoys ‘R’ Us. http://dd.compbio.washington.edu/

  27. Samudrala, R., Moult, J.: An all-atom distance-dependent conditional probability discriminatory function for protein structure prediction. J. Mol. Biol. 275, 895–916 (1998)

    Article  Google Scholar 

  28. Summa, C.M., Levitt, M., Degrado, W.F.: An atomic environment potential for use in protein structure prediction. Journal of Mol. Bio. 352, 986–1001 (2005)

    Article  Google Scholar 

  29. Thomas, P.D., Dill, K.A.: Statistical Potentials Extracted From Protein Structures: How Accurate Are They? Journal of Mol. Bio. 257, 457–469 (1994)

    Article  Google Scholar 

  30. Tobi, R., Elber, D.: Distance-dependent, pair potential for protein folding: Results from linear optimization. Proteins: Structure, Function and Genetics 41, 40–46 (2000)

    Article  Google Scholar 

  31. Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., et al.: A new force field for molecular mechanical simulation of nucleic acids and proteins. Journal of Am. Chem. Soc. 106, 765–794 (1984)

    Article  Google Scholar 

  32. Xu, J.: Rapid Protein Side-Chain Packing via Tree Decomposition. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P., Waterman, M. (eds.) Research in Computational Molecular Biology. LNCS (LNBI), vol. 3500, pp. 423–439. Springer, Heidelberg (2005)

    Google Scholar 

  33. Yanover, C., Weiss, Y.: Approximate Inference and Protein Folding. In: Proceedings of NIPS 2002, pp. 84–86 (2002)

    Google Scholar 

  34. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Generalized Belief Propagation. Advances in Neural Information Processing Systems (NIPS) 13, 689–695 (2000)

    Google Scholar 

  35. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Characterizing belief propagation and its generalizations (2002), http://www.merl.com/reports/TR2002-35/

  36. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Constructing free-energy approximations and generalized belief propagation algorithms. IEEE Transactions on Information Theory 51, 2282–2312 (2005)

    Article  MathSciNet  Google Scholar 

  37. Zhou, H., Zhou, Y.: Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci. 11, 2714–2726 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Terry Speed Haiyan Huang

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Kamisetty, H., Xing, E.P., Langmead, C.J. (2007). Free Energy Estimates of All-Atom Protein Structures Using Generalized Belief Propagation. In: Speed, T., Huang, H. (eds) Research in Computational Molecular Biology. RECOMB 2007. Lecture Notes in Computer Science(), vol 4453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71681-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71681-5_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71680-8

  • Online ISBN: 978-3-540-71681-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics