Skip to main content

Estimates of Approximation Rates by Gaussian Radial-Basis Functions

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4432))

Included in the following conference series:

Abstract

Rates of approximation by networks with Gaussian RBFs with varying widths are investigated. For certain smooth functions, upper bounds are derived in terms of a Sobolev-equivalent norm. Coefficients involved are exponentially decreasing in the dimension. The estimates are proven using Bessel potentials as auxiliary approximating functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Academic Press, Amsterdam (2003)

    MATH  Google Scholar 

  2. Barron, A.R.: Neural net approximation. In: Narendra, K. (ed.) Proc. 7th Yale Workshop on Adaptive and Learning Systems, pp. 69–72. Yale University Press, New Haven (1992)

    Google Scholar 

  3. Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on Information Theory 39, 930–945 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Carlson, B.C.: Special Functions of Applied Mathematics. Academic Press, New York (1977)

    MATH  Google Scholar 

  5. Girosi, F.: Approximation error bounds that use VC-bounds. In: Proceedings of the International Conference on Neural Networks, Paris, pp. 295–302 (1995)

    Google Scholar 

  6. Girosi, F., Anzellotti, G.: Rates of convergence for radial basis functions and neural networks. In: Mammone, R.J. (ed.) Artificial Neural Networks for Speech and Vision, pp. 97–113. Chapman & Hall, London (1993)

    Google Scholar 

  7. Hartman, E.J., Keeler, J.D., Kowalski, J.M.: Layered neural networks with Gaussian hidden units as universal approximations. Neural Computation 2, 210–215 (1990)

    Article  Google Scholar 

  8. Jones, L.K.: A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training. Annals of Statistics 20, 608–613 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kainen, P.C., Kurková, V., Sanguineti, M.: Rates of approximation of smooth functions by Gaussian radial-basis- function networks. Research report ICS–976 (2006), http://www.cs.cas.cz/research/publications.shtml

  10. Kon, M.A., Raphael, L.A., Williams, D.A.: Extending Girosi’s approximation estimates for functions in Sobolev spaces via statistical learning theory. J. of Analysis and Applications 3, 67–90 (2005)

    MATH  MathSciNet  Google Scholar 

  11. Kon, M.A., Raphael, L.A.: Approximating functions in reproducing kernel Hilbert spaces via statistical learning theory. Preprint (2005)

    Google Scholar 

  12. Kurková, V.: Dimension–independent rates of approximation by neural networks. In: Warwick, K., Kárný, M. (eds.) Computer–Intensive Methods in Control and Signal Processing: Curse of Dimensionality, pp. 261–270. Birkhäuser, Basel (1997)

    Google Scholar 

  13. Kurková, V.: High-dimensional approximation and optimization by neural networks. In: Suykens, J., et al. (eds.) Advances in Learning Theory: Methods, Models and Applications, pp. 69–88. IOS Press, Amsterdam (2003)

    Google Scholar 

  14. Kurková, V., Kainen, P.C., Kreinovich, V.: Estimates of the number of hidden units and variation with respect to half-spaces. Neural Networks 10, 1061–1068 (1997)

    Article  Google Scholar 

  15. Martínez, C., Sanz, M.: The Theory of Fractional Powers of Operators. Elsevier, Amsterdam (2001)

    MATH  Google Scholar 

  16. Mhaskar, H.N.: Versatile Gaussian networks. In: Proc. IEEE Workshop of Nonlinear Image Processing, pp. 70–73 (1995)

    Google Scholar 

  17. Mhaskar, H.N., Micchelli, C.A.: Approximation by superposition of a sigmoidal function and radial basis functions. Advances in Applied Mathematics 13, 350–373 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Park, J., Sandberg, I.W.: Universal approximation using radial–basis–function networks. Neural Computation 3, 246–257 (1991)

    Article  Google Scholar 

  19. Park, J., Sandberg, I.: Approximation and radial basis function networks. Neural Computation 5, 305–316 (1993)

    Article  Google Scholar 

  20. Pisier, G.: Remarques sur un resultat non publié de B. Maurey. In: Seminaire d’Analyse Fonctionelle, vol. I(12), pp. 1980–1981, École Polytechnique, Centre de Mathématiques, Palaiseau

    Google Scholar 

  21. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  22. Strichartz, R.: A Guide to Distribution Theory and Fourier Transforms. World Scientific, Hackensack (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bartlomiej Beliczynski Andrzej Dzielinski Marcin Iwanowski Bernardete Ribeiro

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Kainen, P.C., Kůrková, V., Sanguineti, M. (2007). Estimates of Approximation Rates by Gaussian Radial-Basis Functions. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2007. Lecture Notes in Computer Science, vol 4432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71629-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71629-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71590-0

  • Online ISBN: 978-3-540-71629-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics