A GRASP and Branch-and-Bound Metaheuristic for the Job-Shop Scheduling

  • Susana Fernandes
  • Helena R. Lourenço
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4446)


This paper presents a simple algorithm for the job shop scheduling problem that combines the local search heuristic GRASP with a branch-and-bound exact method of integer programming. The proposed method is compared with similar approaches and leads to better results in terms of solution quality and computing times.


Schedule Problem Local Search Critical Path Critical Pair Iterate Local Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, J., Balas, E., Zawack, D.: The Shifting Bottleneck Procedure for Job Shop Scheduling. Management Science 34(3), 391–401 (1988)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Aiex, R.M., Binato, S., Resende, M.G.C.: Parallel GRASP with path-relinking for job shop scheduling. Parallel Computing 29(4), 393–430 (2003)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Applegate, D., Cook, W.: A Computational Study of the Job-Shop Scheduling Problem. ORSA Journal on Computing 3(2), 149–156 (1991)zbMATHGoogle Scholar
  4. 4.
    Balas, E., Vazacopoulos, A.: Guided Local Search with Shifting Bottleneck for Job Shop Scheduling. Management Science 44(2), 262–275 (1998)zbMATHGoogle Scholar
  5. 5.
    Binato, S., Hery, W.J., Loewenstern, D.M., Resende, M.G.C.: A GRASP for Job Shop Scheduling. In: Ribeiro, C.C., Hansen, P. (eds.) Essays and surveys on metaheuristics, pp. 59–79. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  6. 6.
    Carlier, J.: The one-machine sequencing problem. European Journal of Operational Research 11, 42–47 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Caseau, Y., Laburthe, F.: Disjunctive scheduling with task intervals. Technical Report LIENS, 95–25, Ecole Normale Superieure Paris (1995)Google Scholar
  8. 8.
    Chen, S., Talukdar, S., Sadeh, N.: Job-shop-scheduling by a team of asynchronous agentes. In: Proceedings of the IJCAI-93 Workshop on Knowledge-Based Production, Scheduling and Control, Chambery France (1993) Google Scholar
  9. 9.
    Danna, E., Rothberg, E., Pape, C.L.: Exploring relaxation induced neighborhoods to improve MIP solutions. Mathematical Programming, Ser. A. 102, 71–90 (2005)zbMATHCrossRefGoogle Scholar
  10. 10.
    Dell’Amico, M., Trubian, M.: Applying Tabu-Search to the Job-Shop Scheduling Problem (1993)Google Scholar
  11. 11.
    Denzinger, J., Offermann, T.: On Cooperation between Evolutionary Algorithms and other Search Paradigms. In: Proceedings of the 1999 Congress on Evolutionary Computational (1999)Google Scholar
  12. 12.
    Feo, T., Resende, M.: Greedy Randomized Adaptive Search Procedures. Journal of Global Optimization 6, 109–133 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Fernandes, S., Lourenço, H.R.: Optimized Search methods. Working paper, Universitat Pompeu Fabra, Barcelona, Spain (2006)Google Scholar
  14. 14.
    Fisher, H., Thompson, G.L.: Probabilistic learning combinations of local job-shop scheduling rules. In: Muth, J.F., Thompson, G.L. (eds.) Industrial Scheduling, pp. 225–251, Prentice Hall, Englewood Cliffs (1963)Google Scholar
  15. 15.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completenes. Freeman, San Francisco (1979)Google Scholar
  16. 16.
    Jain, A.S., Meeran, S.: Deterministic job shop scheduling: Past, present and future. European Journal of Operational Research 133, 390–434 (1999)CrossRefGoogle Scholar
  17. 17.
    Lawrence, S.: Resource Constrained Project Scheduling: an Experimental Investigation of Heuristic Scheduling techniques. Graduate School of Industrial Administration, Carnegie-Mellon University (1984)Google Scholar
  18. 18.
    Lourenço, H.R.: Job-shop scheduling: Computational study of local search and large-step optimization methods. European Journal of Operational Research 83, 347–367 (1995)zbMATHCrossRefGoogle Scholar
  19. 19.
    Lourenço, H.R., Zwijnenburg, M.: Combining large-step optimization with tabu-search: Application to the job-shop scheduling problem. In: Osman, I.H., Kelly, J.P. (eds.) Meta-heuristics: Theory & Applications, Kluwer Academic Publishers, Dordrecht (1996)Google Scholar
  20. 20.
    Nowicki, E., Smutnicki, C.: An Advanced Tabu Search Algorithm for the Job Shop Problem. Journal of Scheduling 8, 145–159 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Nowicki, E., Smutniki, C.: A Fast Taboo Search Algorithm for the Job Shop Problem. Management Science 42(6), 797–813 (1996)zbMATHGoogle Scholar
  22. 22.
    Roy, B., Sussman, B.: Les probèms d’ordonnancement avec constraintes disjonctives. Note DS 9 bis, SEMA, Paris (1964)Google Scholar
  23. 23.
    Schrage, L.: Solving resource-constrained network problems by implicit enumeration: Non pre-emptive case. Operations Research 18, 263–278 (1970)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Storer, R.H., Wu, S.D., Vaccari, R.: New search spaces for sequencing problems with application to job shop scheduling. Management Science 38(10), 1495–1509 (1992)zbMATHCrossRefGoogle Scholar
  25. 25.
    Taillard, É.D. : Benchmarks for Basic Scheduling Problems. European Journal of Operational Research 64(2), 278–285 (1993)zbMATHCrossRefGoogle Scholar
  26. 26.
    Taillard, É.D.: Parallel Taboo Search Techniques for the Job Shop Scheduling Problem. ORSA Journal on Computing 6(2), 108–117 (1994)zbMATHGoogle Scholar
  27. 27.
    Tamura, H., Hirahara, A., Hatono, I., Umano, M.: An approximate solution method for combinatorial optimisation. In: Transactions of the Society of Instrument and Control Engineers vol. 130, pp. 329–336 (1994)Google Scholar
  28. 28.
    Yamada, T., Nakano, R.: A genetic algorithm applicable to large-scale job-shop problems. In: Manner, R., Manderick, B. (eds.) Parallel Problem Solving from Nature, vol. 2, pp. 281–290. Elsevier Science, Amsterdam (1992)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Susana Fernandes
    • 1
  • Helena R. Lourenço
    • 2
  1. 1.Universidade do Algarve, FaroPortugal
  2. 2.Universitat Pompeu Fabra, BarcelonaSpain

Personalised recommendations