Advertisement

A Genetic Algorithm for the Resource Renting Problem with Minimum and Maximum Time Lags

  • Francisco Ballestín
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4446)

Abstract

We work with a project scheduling problem subject to temporal constraints where the resource availability costs have to be minimised. As an extension of the more well known Resource Investment Problem, which considers only time-independent costs, this problem includes both time-independent fixed costs and time-dependent variable renting costs for the resources. Consequently, in addition to projects where all resources are bought, we can deal with projects where resources are rented. Based on a new codification of a solution for project scheduling, we develop a Genetic Algorithm capable of outperforming a branch-and-bound procedure that exists for the problem.

Keywords

Project scheduling Temporal constraints Resource costs Metaheuristic algorithms Genetic Algorithms.  

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahuja, H.N.: Construction performance control by networks. John Wiley, New York (1976)Google Scholar
  2. 2.
    Ballestín, F., Schwindt, C., Zimmermann, J.: Resource leveling in make-to-order production: modeling and heuristic solution method. Accepted for the International Journal of Operations ResearchGoogle Scholar
  3. 3.
    Demeulemeester, E.: Minimizing resource availability costs in time-limited project networks. Management Science 41, 1590–1598 (1995)zbMATHCrossRefGoogle Scholar
  4. 4.
    Drexl, A.: Scheduling of project networks by job assignment. Management Science 37, 1590–1602 (1991)zbMATHGoogle Scholar
  5. 5.
    Goldberg, D.E.: Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  6. 6.
    Herroelen, W.B., De Reyck, B., Demeulemeester, E.: Resource-Constrained Project Scheduling: A Survey of Recent Developments. Computers and Operations Research 25(4), 279–302 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Holland, H.J.: Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  8. 8.
    Kolisch, R.: Project Scheduling under Resource Constraints. Springer, Heidelberg (1995)Google Scholar
  9. 9.
    Kolisch, R., Hartmann, S.: Heuristic algorithms for solving the resource-constrained project scheduling problem: Classification and computational analysis. In: Weglarz, J. (ed.) Project Scheduling: Recent Models, Algorithms and Applications, pp. 147–178. Kluwer Academic Publishers, Berlin (1999)Google Scholar
  10. 10.
    Kolisch, R., Schwindt, C., Sprecher, A.: Benchmark instances for project scheduling problems. In: Weglarz, J. (ed.) Project scheduling – recent models, algorithms and applications, pp. 197–212. Kluwer, Boston (1999)Google Scholar
  11. 11.
    Neumann, K., Schwindt, C., Zimmermann, J.: Project Scheduling with Time Windows and Scarce Resources. Springer, Berlin (2003)zbMATHGoogle Scholar
  12. 12.
    Neumann, K., Zimmermann, J.: Procedures for resource leveling and net present value problems in project scheduling with general temporal and resource constraints. European Journal of Operational Research 127, 425–443 (2000)zbMATHCrossRefGoogle Scholar
  13. 13.
    Nübel, H.: Minimierung der Ressourcenkosten für Projekte mit planungsabhängigen Zeitfenstern. Gabler, Wiesbaden (1999)Google Scholar
  14. 14.
    Nübel, H.: The resource renting problem subject to temporal constraints. OR Spektrum 23, 359–381 (2001)zbMATHCrossRefGoogle Scholar
  15. 15.
    Sprecher, A., Kolisch, R., Drexl, A.: Semi-active, active and non-delay schedules for the resource-constrained project scheduling problem. European Journal of Operational Research 80, 94–102 (1995)zbMATHCrossRefGoogle Scholar
  16. 16.
    Vanhoucke, M., Demeulemeester, E.L., Herroelen, W.S.: An exact procedure for the resource-constrained weighted earliness-tardiness project scheduling problem. Annals of Operations Research 102, 179–196 (2001)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Francisco Ballestín
    • 1
  1. 1.Department of Statistics and OR, Public University of Navarra, PamplonaSpain

Personalised recommendations