Crossover Operators for the Car Sequencing Problem

  • Arnaud Zinflou
  • Caroline Gagné
  • Marc Gravel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4446)


The car sequencing problem involves scheduling cars along an assembly line while satisfying as many assembly line requirements as possible. The car sequencing problem is NP-hard and is applied in industry as shown by the 2005 ROADEF Challenge. In this paper, we introduce three new crossover operators for solving this problem efficiently using a genetic algorithm. A computational experiment compares these three operators on standard car sequencing benchmark problems. The best operator is then compared with state of the art approach for this problem. The results show that the proposed operator consistently produces competitive solutions for most instances.


Genetic Algorithm Local Search Utilization Rate Travel Salesman Problem Travel Salesman Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Parello, B.D., Kabat, W.C., Wos, L.: Job-shop scheduling using automated reasoning: a case study of the car sequencing problem. Journal of Automated Reasoning 2, 1–42 (1986)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Kis, T.: On the complexity of the car sequencing problem. Operation Research Letters 32(4), 331–336 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Gagné, C., Gravel, M., Price, W.L.: Solving real car sequencing problems with ant colony optimization. European Journal of Operational Research 174(3), 1427–1448 (2005)CrossRefGoogle Scholar
  4. 4.
    Gravel, M., Gagné, C., Price, W.L.: Review and comparison of three methods for the solution of the car sequencing problem. Journal of the Operational Research Society 56(11), 1287–1295 (2005)zbMATHCrossRefGoogle Scholar
  5. 5.
    Delaval, M.: Séquencement des lignes d’assemblage à modèles mélangés. Thèse de doctorat, Université des Sciences et Technologies de Lille (1997)Google Scholar
  6. 6.
    Lopez, P., Roubellat, F.: Ordonnancement de la production, p. 431. Hermès Science Publications, Paris (2001)Google Scholar
  7. 7.
    Gottlieb, J., Puchta, M., Solnon, C.: A study of greedy, local search and ant colony optimization approches for car sequencing problems. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 246–257. Springer, Heidelberg (2003)Google Scholar
  8. 8.
    Davenport, A., Tsang, E.: Solving constraint satisfaction sequencing problems by iterative repair. In: Practical Applications of Constraint Technologies and Logic Programming (PACLP). First International Conference, pp. 345–357. Practical Applications Company, London (1999)Google Scholar
  9. 9.
    Gagné, C., Gravel, M., Morin, S., Price, W.L.: Impact of the pheromone trail on the performance of ACO algorithms for solving the «car sequencing». Journal of the Operational Research Society (in press 2006)Google Scholar
  10. 10.
    Solnon, C.: Des fourmis pour le problème d’ordonnancement de voitures. Actes des Journées Francophones de Programmation par Contraintes (JFPC), 305–316 (2006)Google Scholar
  11. 11.
    Warwick, T., Tsang, E.: Tackling car sequencing problem using a generic genetic algorithm. Evolutionary Computation 3(3), 267–298 (1995)Google Scholar
  12. 12.
    Terada, J., Vo, H., Joslin, D.: Combining Genetic Algorithms with Squeaky-Wheel Optimization. In: Genetic and Evolutionary Computation COnference (GECCO), Seattle (2006)Google Scholar
  13. 13.
    Michalewicz, Z.: Genetic algorithms + data structures = evolution programs, 3rd edn. Springer, Heidelberg (1996)zbMATHGoogle Scholar
  14. 14.
    Potvin, J.-Y.: Genetic Algorithms for the Traveling Salesman Problem. Annals of Operations Research 63, 339–370 (1996)zbMATHCrossRefGoogle Scholar
  15. 15.
    Ben Hamida, S.: Algorithmes Évolutionnaires: Prise en Compte des Contraintes et Application Réelle. Thèse de doctorat, Université de Paris 11 (2001)Google Scholar
  16. 16.
    Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Harbor (1975)Google Scholar
  17. 17.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  18. 18.
    Basseur, M.: Conception d’algorithmes coopératifs pour l’optimisation multi-objectifs : Application aux problèmes d’ordonnancement de type flow-shop. Thèse de doctorat, Université des Sciences et Technologies de Lille (2004)Google Scholar
  19. 19.
    Barichard, V.: Approches hybrides pour les problèmes multiobjectifs. Thèse de doctorat, École doctorale d’Angers (2003)Google Scholar
  20. 20.
    Berro, A.: Optimisation multiobjectif et stratégies d’évolution en environnement dynamique. Université des Sciences Sociales Toulouse I (2001)Google Scholar
  21. 21.
    Gravel, M., Price, W.L., Gagné, C.: Scheduling jobs in an Alcan aluminium foundry using a genetic algorithm. International Journal of Production Research 38(2), 309–322 (2000)zbMATHCrossRefGoogle Scholar
  22. 22.
    Zinflou, A.: Système interactif d’aide à la décision basé sur des algorithmes génétiques pour l’optimisation multi-objectifs. Mémoire de maîtrise, Université du Québec à Chicoutimi (2004)Google Scholar
  23. 23.
    Goldberg, D.E., Lingle, R.: Alleles, Loci and the Traveling Salesman Problem. In: Grefenstette, J.J. (ed.) Proceedings of the First International Conference on Genetic Algorithms (ICGA’85), pp. 154–159. Carnegie-Mellon University, Pittsburgh, PA (1985)Google Scholar
  24. 24.
    Syswerda, G.: Uniform Crossover in Genetic Algorithm. In: Proceedings of the Third International Conference on Genetic Algorithms, pp. 2–9. Morgan Kaufmann Publishers Inc, Washington (1989)Google Scholar
  25. 25.
    Gent, I.P., Walsh, T.: CSPLib: A benchmark library for constraints. Research Reports of the APES Group. APES-09, Available from (1999)

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Arnaud Zinflou
    • 1
  • Caroline Gagné
    • 1
  • Marc Gravel
    • 1
  1. 1.Université du Québec à Chicoutimi, 555 boulevard de l’université, Chicoutimi, Qc, G7H2B1Canada

Personalised recommendations