Skip to main content

Evolution of an Efficient Search Algorithm for the Mate-In-N Problem in Chess

  • Conference paper
Genetic Programming (EuroGP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4445))

Included in the following conference series:

Abstract

We propose an approach for developing efficient search algorithms through genetic programming. Focusing on the game of chess we evolve entire game-tree search algorithms to solve the Mate-In-N problem: find a key move such that even with the best possible counterplays, the opponent cannot avoid being mated in (or before) move N. We show that our evolved search algorithms successfully solve several instances of the Mate-In-N problem, for the hardest ones developing 47% less game-tree nodes than CRAFTY—a state-of-the-art chess engine with a ranking of 2614 points. Improvement is thus not over the basic alpha-beta algorithm, but over a world-class program using all standard enhancements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allis, L.V., van der Meulen, M., van den Herik, H.J.: Proof-number search. Artificial Intelligence 66, 91–124 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beal, D.F., Smith, M.C.: Multiple probes of transposition tables. ICCA Journal 19(4), 227–233 (1996)

    Google Scholar 

  3. Bourzutschky, M.S., Tamplin, J.A., Haworth, G.M.: Chess endgames: 6-man data and strategy. Theoretical Computer Science 349, 140–157 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brave, S.: Evolving recursive programs for tree search. In: Angeline, P.J., Kinnear Jr., K.E. (eds.) Advances in Genetic Programming 2, pp. 203–220. MIT Press, Cambridge (1996)

    Google Scholar 

  5. Campbell, M., Hoane Jr., A.J., Hsu, F.-H.: Deep blue. Artificial Intelligence 134(1–2), 57–83 (2002)

    Article  MATH  Google Scholar 

  6. Chabris, C.F., Hearst, E.S.: Visualization, pattern recognition, and forward search: Effects of playing speed and sight of the position on grandmaster chess errors. Cognitive Science 27, 637–648 (2003)

    Article  Google Scholar 

  7. Gross, R., Albrecht, K., Kantschik, W., Banzhaf, W.: Evolving chess playing programs. In: Langdon, W.B., Cantú-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E., Jonoska, N. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference. GECCO 2002, New York, 9-13 July 2002, pp. 740–747. Morgan Kaufmann Publishers, Seattle (2002)

    Google Scholar 

  8. Hauptman, A., Sipper, M.: Analyzing the intelligence of a genetically programmed chess player. In: Late Breaking Papers at the Genetic and Evolutionary Computation Conference 2005, Washington, DC (June 2005)

    Google Scholar 

  9. Hauptman, A., Sipper, M.: GP-endchess: Using genetic programming to evolve chess endgame players. In: Keijzer, M., Tettamanzi, A.G.B., Collet, P., van Hemert, J.I., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 120–131. Springer, Heidelberg (2005)

    Google Scholar 

  10. Hong, T.-P., Huang, K.-Y., Lin, W.-Y.: Adversarial search by evolutionary computation. Evolutionary Computation 9(3), 371–385 (2001)

    Article  Google Scholar 

  11. Hong, T.-P., Huang, K.-Y., Lin, W.-Y.: Applying genetic algorithms to game search trees. Soft Comput. 6(3-4), 277–283 (2002)

    MATH  Google Scholar 

  12. Kaindl, H.: Quiescence search in computer chess (Reprint in Computer Game-Playing: Theory and Practice, Ellis Horwood, Chichester, 1983). ACM SIGART Bulletin 80, 124–131 (1982)

    Google Scholar 

  13. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge (May 1994)

    MATH  Google Scholar 

  14. Marsland, T.A., Campbell, M.S.: A survey of enhancements to the alpha-beta algorithm. In: Proceedings of the ACM National Conference, November 1981, pp. 109–114. ACM Press, New York (1981)

    Chapter  Google Scholar 

  15. Newborn, M.: Deep blue’s contribution to AI. Ann. Math. Artif. Intell. 28(1-4), 27–30 (2000)

    Article  MATH  Google Scholar 

  16. Polgar, L.: Chess : 5334 Problems, Combinations, and Games. Black Dog and Leventhal Publishers (1995)

    Google Scholar 

  17. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall, Englewood Cliffs (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marc Ebner Michael O’Neill Anikó Ekárt Leonardo Vanneschi Anna Isabel Esparcia-Alcázar

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Hauptman, A., Sipper, M. (2007). Evolution of an Efficient Search Algorithm for the Mate-In-N Problem in Chess. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds) Genetic Programming. EuroGP 2007. Lecture Notes in Computer Science, vol 4445. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71605-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71605-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71602-0

  • Online ISBN: 978-3-540-71605-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics