Particle Acceleration at the Earth’s Bow Shock

  • David Burgess
Part of the Lecture Notes in Physics book series (LNP, volume 725)


Shocks can be viewed as sites where upstream bulk flow energy is converted into downstream thermal energy. Collisionless shocks have the further property that they are sites of particle acceleration, as some fraction of the flow energy is diverted to a small number of energetic particles. Shocks are thus important in many astrophysical and solar environments. The best studied example is the Earth’s bow shock, which has the benefit of high time resolution, in situ multi-point measurements. Models and mechanisms developed for the Earth’s bow shock are useful for understanding the behaviour of shocks in the corona and solar wind. The Earth’s bow shock is curved, and the main controlling factor of its structure is the angle between the magnetic field and shock normal, which is used to classify the shock as quasi-parallel or quasi-perpendicular. We review observations of accelerated electrons at the quasi-perpendicular shock and the standard model of acceleration, namely adiabatic reflection. We describe the weaknesses of this model and suggest a new mechanism, based on simulations, which predicts power law energy spectra. The quasi-parallel shock is a region of large amplitude turbulence, containing coherent structures and wavetrains. Cluster multi-point observations of these large amplitude pulsations are presented as a review of the present understanding of this type of shock. In terms of particle acceleration, quasi-parallel shocks are important since they are believed to be the best examples of sites for Fermi acceleration∈dexFermi acceleration. Cluster observations are reviewed indicating unambiguously that energetic particle diffusion, a fundamental assumption of the Fermi process, is operating at the quasi-parallel bow shock. Finally, a class of transient events observed at the bow shock, Hot Flow Anomalies, is described. The causative mechanism and implications for particle acceleration are discussed, and a possible role in other heliospheric environments is suggested.


Solar Wind Energetic Particle Tangential Discontinuity Suprathermal Electron Magnetic Mirror 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. D. Burgess: “Collisionless shocks”, in Introduction to Space Physics, ed. by M.G. Kivelson, C.T. Russell (Cambridge University Press, Cambridge, 1995), p. 129Google Scholar
  2. S.D. Bale, M.A. Balikhin, T.S. Horbury, V.V. Krasnoselskikh, H. Kucharek, E. Möbius, S.N. Walker, A. Balogh, D. Burgess, B. Lembège, E.A. Lucek, M. Scholer, S.J. Schwartz, M.F. Thomsen: Space Sci. Rev. 118, 161–203 (2005)CrossRefADSGoogle Scholar
  3. P.C. Filbert, P.J. Kellogg: J. Geophys. Res. 84, 1369–1381 (1979)ADSCrossRefGoogle Scholar
  4. I.H. Cairns: J. Geophys. Res. 92(11), 2315–2327 (1987)ADSCrossRefGoogle Scholar
  5. R.J. Fitzenreiter, J.D. Scudder, A.J. Klimas: J. Geophys. Res95, 4155–4173 (1990)ADSCrossRefGoogle Scholar
  6. D. Burgess: Adv. Space Res. 20(4/5), 673–682 (1997)CrossRefADSGoogle Scholar
  7. S.A. Knock, I.H. Cairns, P.A. Robinson, Z. Kuncic: J. Geophys. Res. 108(A3), 6–1 (2003)Google Scholar
  8. J.J. Mitchell, I.H. Cairns, P.A. Robinson: J. Geophys. Res. 109(A18), 6108 (2004)CrossRefGoogle Scholar
  9. Z. Kuncic, I.H. Cairns, S.A. Knock: J. Geophys. Res. 109(A18), A02 108 (2004)Google Scholar
  10. K.A. Anderson, R.P. Lin, F. Martel, C.S. Lin, G.K. Parks, H. Rème: Geophys. Res. Lett. 6, 401–404 (1979)ADSCrossRefGoogle Scholar
  11. M. Vandas: J. Geophys. Res. 106(A15), 1859–1872 (2001)CrossRefADSGoogle Scholar
  12. W.C. Feldman, R.C. Anderson, S.J. Bame, S.P. Gary, J.T. Gosling, D.J. McComas, M.F. Thomsen: J. Geophys. Res. 88(NA1), 96–110 (1983)ADSCrossRefGoogle Scholar
  13. R.J. Fitzenreiter, A.J. Klimas, J.D. Scudder: Geophys. Res. Lett. 11, 496–499 (1984)ADSCrossRefGoogle Scholar
  14. J.T. Gosling, M.F. Thomsen, S.J. Bame, C.T. Russell: J. Geophys. Res. 94(NA8), 10011–10025 (1989)ADSCrossRefGoogle Scholar
  15. M.M. Leroy, A. Mangeney: Ann. Geophys. 2(4), 449–456 (1984)Google Scholar
  16. C.S. Wu: J. Geophys. Res. 89(NA10), 8857–8862 (1984)ADSCrossRefGoogle Scholar
  17. R.J. Fitzenreiter: Adv. Space Res. 15(8/9), 9–27 (1995)Google Scholar
  18. I.H. Cairns, P.A. Robinson, R.R. Anderson, R.J. Strangeway: J. Geophys. Res. 102(11), 24249–24264 (1997)CrossRefADSGoogle Scholar
  19. D. Krauss-Varban, D. Burgess, C.S. Wu: J. Geophys. Res. 94(11A), 15 089–15 098 (1989)ADSCrossRefGoogle Scholar
  20. D. Krauss-Varban, D. Burgess: J. Geophys. Res. 96(A1), 143–154 (1991)Google Scholar
  21. M. Vandas: J. Geophys. Res. 100(A9), 23 499–23 506 (1995)CrossRefADSGoogle Scholar
  22. C.F. Kennel, J.P. Edmiston, T. Hada: ‘‘A quarter century of collisionless shock research, in Collisionless Shocks in the Heliosphere: A Tutorial Review, Geophys. Monogr. Ser., Vol. 34, ed. by R.G. Stone, B.T. Tsurutani (AGU, Washington, D. C., 1985), pp. 1–36Google Scholar
  23. V.V. Krasnoselskikh, B. Lembège, P. Savoini, V.V. Lobzin: Physics of Plasmas 9, 1192–1209 doi:10.1063/1.1457 465 (2002)CrossRefMathSciNetADSGoogle Scholar
  24. B. Lembège, P. Savoini: Physics of Fluids B 4, 3533–3548 (1992)Google Scholar
  25. M. Scholer, S. Matsukiyo: Ann. Geophys. 22, 2345–2353 (2004)ADSCrossRefGoogle Scholar
  26. B. Lembège, P. Savoini: J. Geophys. Res. 107(A3) (2002)Google Scholar
  27. P. Savoini, B. Lembège: J. Geophys. Res. 106(A15), 12 975–12 992 (2001)CrossRefADSGoogle Scholar
  28. D. Krauss-Varban: J. Geophys. Res. 99(A18), 2537–2551 (1994)CrossRefADSGoogle Scholar
  29. R.E. Lowe, D. Burgess: Geophys. Res. Lett. 27, 3249–3252 (2000)CrossRefADSGoogle Scholar
  30. R.E. Lowe, D. Burgess: Ann. Geophys. 21, 671–679 (2003)ADSCrossRefGoogle Scholar
  31. F.M. Ipavich, A.B. Galvin, G. Gloeckler, M. Scholer, D. Hovestadt: J. Geophys. Res. 86(NA6), 4337–4342 (1981)ADSCrossRefGoogle Scholar
  32. W.I. Axford, E. Leer, G. Skadron: ‘‘The acceleration of cosmic rays by shock waves, in Proc. Int. Conf. Cosmic Rays 15th (Vol. 11, 1977), p. 132Google Scholar
  33. A.R. Bell: M. Not. R. Astron. Soc. 182, 147–156 (1978)ADSGoogle Scholar
  34. A.R. Bell: M. Not. R. Astron. Soc. 182, 443–455 (1978)ADSGoogle Scholar
  35. M. Scholer: ‘‘Diffusive acceleration’’, in Collisionless Shocks in the Heliosphere: Reviews of Current Research, Geophys. Monogr. Ser., Vol. 35, ed. by R.G. Stone, B.T. Tsurutani (AGU, Washington, D. C., 1985), pp. 287–301Google Scholar
  36. M.A. Forman, G.M. Webb: ‘‘Acceleration of energetic particles’’, in Collisionless Shocks in the Heliosphere: Reviews of Current Research, Geophys. Monogr. Ser., Vol. 35, ed. by R.G. Stone, B.T. Tsurutani (AGU, Washington, D. C., 1985), pp. 91–114Google Scholar
  37. F.C. Jones, D.C. Ellison: Space Sci. Rev. 58, 259–346 (1991)CrossRefADSGoogle Scholar
  38. M.A. Lee: J. Geophys. Res. 87, 5063–5080 (1982)ADSCrossRefGoogle Scholar
  39. C.F. Kennel, F.V. Coroniti, F.L. Scarf, W.A. Livesey, C.T. Russell, E.J. Smith, K.P. Wenzel, M. Scholer: J. Geophys. Res. 91, 11 917–11 928 (1987)ADSCrossRefGoogle Scholar
  40. T. Terasawa: Adv. Space Res. 15(8/9), 53–62 (1995)CrossRefADSGoogle Scholar
  41. D. Burgess: Geophys. Res. Lett. 16, 345 (1989)ADSCrossRefGoogle Scholar
  42. V.A. Thomas, D. Winske, N. Omidi: J. Geophys. Res. 95, 18 809–18 819 (1990)ADSCrossRefGoogle Scholar
  43. J. Giacalone, D. Burgess, S.J. Schwartz, D.C. Ellison: Ap. J. 402, 550–559 (1993)CrossRefADSGoogle Scholar
  44. M. Scholer, D. Burgess: J. Geophys. Res. 97(A6), 8319–8326 (1992)ADSCrossRefGoogle Scholar
  45. M.F. Thomsen, J.T. Gosling, C.T. Russell: Adv. Space Res. 8(9/10), 9175–9178 (1988)Google Scholar
  46. S.J. Schwartz, D. Burgess, W.P. Wilkinson, R.L. Kessel, M. Dunlop, H. Lühr: J. Geophys. Res. 97, 4209–4227 (1992)ADSCrossRefGoogle Scholar
  47. S.J. Schwartz, D. Burgess: Geophys. Res. Lett. 18, 373–376 (1991)ADSCrossRefGoogle Scholar
  48. J. Giacalone, S.J. Schwartz, D. Burgess: Geophys. Res. Lett. 20, 149–152 (1993)ADSCrossRefGoogle Scholar
  49. K. Tsubouchi, B. Lembège: J. Geophys. Res. 109, H02 114, doi: 10.1029/2003JA010 014 (2004)Google Scholar
  50. D. Burgess, E.A. Lucek, M. Scholer, S.D. Bale, M.A. Balikhin, A. Balogh, T.S. Horbury, V.V. Krasnoselskikh, H. Kucharek, B. Lembège, E. Möbius, S.J. Schwartz, M.F. Thomsen, S.N. Walker: Space Sci. Rev. 118, 205–222 (2005)CrossRefADSGoogle Scholar
  51. K.J. Trattner, E. Möbius, M. Scholer, B. Klecker, M. Hilchenbach, H. Luehr: J. Geophys. Res. 99, 13 389–13 400 (1994)CrossRefADSGoogle Scholar
  52. A. Kis, M. Scholer, B. Klecker, E. Möbius, E.A. Lucek, H. Rème, J.M. Bosqued, L.M. Kistler, H. Kucharek: Geophys. Res. Lett. 31, 20 801 (2004)CrossRefADSGoogle Scholar
  53. S.J. Schwartz, C.P. Chaloner, P.J. Christiansen, A.J. Coates, D.S. Hall, A.D. Johnstone, M.P. Gough, A.J. Norris, R.P. Rijnbeek, D.J. Southwood, L.J.C. Woolliscroft: Nature 318, 269–271 (1985)CrossRefADSGoogle Scholar
  54. M.F. Thomsen, J.T. Gosling, S.A. Fuselier, S.J. Bame, C.T. Russell: J. Geophys. Res. 91, 2961–2973 (1986)ADSCrossRefGoogle Scholar
  55. E.A. Lucek, T.S. Horbury, A. Balogh, I. Dandouras, H. Rème: J. Geophys. Res. 109(A18), 6207 (2004)CrossRefGoogle Scholar
  56. S.J. Schwartz, G. Paschmann, N. Sckopke, T.M. Bauer, M. Dunlop, A.N. Fazakerley, M.F. Thomsen: J. Geophys. Res. 105(A14), 12 639–12 650 (2000)CrossRefADSGoogle Scholar
  57. D. Burgess: J. Geophys. Res. 94, 472 (1989)ADSCrossRefGoogle Scholar
  58. V.A. Thomas, D. Winske, M.F. Thomsen, T.G. Onsager: J. Geophys. Res. 96(NA7), 11 625–11 632 (1991)ADSCrossRefGoogle Scholar
  59. Y. Lin: Planss 50, 577–591 (2002)ADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • David Burgess
    • 1
  1. 1.Astronomy UnitUniversity of LondonQueen Mary

Personalised recommendations