Advertisement

Magnetic Complexity, Fragmentation, Particle Acceleration and Radio Emission from the Sun

  • Loukas Vlahos
Part of the Lecture Notes in Physics book series (LNP, volume 725)

Abstract

The most popular flare model used to explain the energy release, particle acceleration and radio emission is based on the following assumptions: (1) The formation of a current sheet above a magnetic loop, (2) The stochastic acceleration of particles in the current sheet at the helmet of the loop, (3) the transport and trapping of particles inside the flaring loop. We review the observational consequences of the above model and try to generalize by putting forward a new suggestion, namely assuming that a complex active region driven by the photospheric motions forms naturally a large number of stochastic current sheets that accelerate particles, which in turn can be trapped or move along complex field line structures. The emphasis will be placed on the efficiency and the observational tests of the different models proposed for a flare.

Keywords

Current Sheet Coronal Mass Ejection Solar Phys Radio Emission High Energy Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.P. Lin, H.S. Hudson: Solar Phys 50, 153 (1976)CrossRefADSGoogle Scholar
  2. 2.
    B.R. Dennis, R.A. Schwartz: Solar Phys 121, 75 (1989)CrossRefADSGoogle Scholar
  3. 3.
    A.O. Benz et al.: Solar Phys 153, 33 (1994)CrossRefADSGoogle Scholar
  4. 4.
    P. Saint-Hilaire, A.O. Benz: Solar Phys 210, 287 (2002)CrossRefADSGoogle Scholar
  5. 5.
    G.D. Holman et al.: ApJ 595, L97 (2003)CrossRefADSGoogle Scholar
  6. 6.
    E.R. Priest, T.G. Forbes: Astron. Astrophys. Rev. 10, 313 (2002)CrossRefADSGoogle Scholar
  7. 7.
    B.C. Low: JGR 106, 25141 (2001)CrossRefADSGoogle Scholar
  8. 8.
    J.A. Klimchuk: in “Space Weather”, P. Song, H.J. Singer and G.L.Siscoe (eds), AGU Geophysical Monograph, 125, 143, (2001)Google Scholar
  9. 9.
    R.A. Kopp, G.W. Pneuman: Solar Phys 216, 123 (1977)Google Scholar
  10. 10.
    J. Heyvaerts, E.R. Priest, D. Rust: ApJ 50, 85 (1976)Google Scholar
  11. 11.
    T.G. Forbes, E.R. Priest: ApJ 446, 377 (1995)CrossRefADSGoogle Scholar
  12. 12.
    T. Yokoyama, K. Shibata: ApJ 549, 1160 (2001)CrossRefADSGoogle Scholar
  13. 13.
    S. Antiochos, C.R. DeVore, J.A. Klimchuk: ApJ 510, 485 (1999)CrossRefADSGoogle Scholar
  14. 14.
    I.I. Rousev et al.: ApJL 588, L45 (2003)CrossRefADSGoogle Scholar
  15. 15.
    T. Amari, J.F. Luciani, J.J. Aly, Z. Mikic and J. Linker: ApJ 595, 1231 (2003)CrossRefADSGoogle Scholar
  16. 16.
    M. Aschwanden: Physics of the solar corona, (Springer, Berlin Heidelberg New York 2004)Google Scholar
  17. 17.
    B. Kliem, M. Karlicky, A.O. Benz: AAp 360, 715 (2000)ADSGoogle Scholar
  18. 18.
    A. Nordlund, K. Galsgaard: Tech. Rept., Astr. Obs., Copenhagen Univ. (1997)Google Scholar
  19. 19.
    K. Galsgaard, A. Nordlund: JGR 101, 13445 (1996)CrossRefADSGoogle Scholar
  20. 20.
    R. Turkmani et al.: ApJ, 620, L59 (2005)CrossRefADSGoogle Scholar
  21. 21.
    J.A. Miller et al.: JGR 102, 14631 (1997)CrossRefADSGoogle Scholar
  22. 22.
    P. Dmitruk et al.: ApJ 617, 667 (2004)CrossRefADSGoogle Scholar
  23. 23.
    K. Arzner, L. Vlahos: ApJL 605, L69 (2004)CrossRefADSGoogle Scholar
  24. 24.
    S. Moriyasu et al.: ApJL 601, L107 (2004)CrossRefADSGoogle Scholar
  25. 25.
    K. Arzner, L. Vlahos, B. Knaepen, N. Denewet: Springer Lecture Notes in Computer Science 3723 (Springer, Berlin 2005), 538Google Scholar
  26. 26.
    L. Vlahos, M. Georgoulis: ApJL 603, L61 (2004)CrossRefADSGoogle Scholar
  27. 27.
    C.E. Alissandrakis: AAp 100, 197 (1981)ADSGoogle Scholar
  28. 28.
    E. Priest, G. Hornig, D.I. Pontin: JGR 108, 1285 (2003)CrossRefGoogle Scholar
  29. 29.
    P. Bak, C. Tang, K. Wiesenfeld: Phys. Rev. Lett. 59, 381 (1987)CrossRefMathSciNetADSGoogle Scholar
  30. 30.
    E.T. Lu, R.J. Hamilton: ApJ 380, L89 (1991)CrossRefADSGoogle Scholar
  31. 31.
    L. Vlahos, M. Geopgoulis, R. Kluving, P. Paschos: AAp 299, 897 (1995)ADSGoogle Scholar
  32. 32.
    H. Isliker, A. Anastasiadis, L. Vlahos: AAp 377, 1068 (2001)ADSGoogle Scholar
  33. 33.
    N.B. Crosby, M.J. Aschwanden, B.R. Dennis: Solar Phys 143, 275 (1993)CrossRefADSGoogle Scholar
  34. 34.
    T. Fragos, E. Rantsiou, L. Vlahos: AAp 420, 719 (2004)ADSGoogle Scholar
  35. 35.
    A. Anastasiadis, M. Georgoulis, L. Vlahos: ApJ 489, 367 (1997)CrossRefADSGoogle Scholar
  36. 36.
    A. Anastasiadis, C. Gontikakis, N. Vilmer, L. Vlahos: AAp 603, 422 323 (2004)Google Scholar
  37. 37.
    L. Vlahos, H. Isliker, F. Lepreti: ApJ 608, 540 (2004)CrossRefADSGoogle Scholar
  38. 38.
    T. Bastian: Adv. Space Res. 32, 2705 (2003)ADSGoogle Scholar
  39. 39.
    M.R. Kundu, L. Vlahos: Spa. Sci. Rev. 32, 405Google Scholar
  40. 40.
    T. Bastian: Proc-2000-Murdin, Vol. 3, 2553 (2000)Google Scholar
  41. 41.
    A. Benz: Solar and Space Weather Radiophysics, (eds D.E. Gary and C.U. Keller) Kluwer Academic Press, 203-221 (2004)Google Scholar
  42. 42.
    H. Isliker, L. Vlahos, A.O. Benz, A. Raoult: AAp 336, 371 (1998)ADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Loukas Vlahos
    • 1
  1. 1.Department of PhysicsUniversity of Thessaloniki54124 ThessalonikiGreece

Personalised recommendations