Skip to main content

UltraSwarm: A Further Step Towards a Flock of Miniature Helicopters

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4433))

Abstract

We describe further progress towards the development of a MAV (micro aerial vehicle) designed as an enabling tool to investigate aerial flocking. Our research focuses on the use of low cost off the shelf vehicles and sensors to enable fast prototyping and to reduce development costs. Details on the design of the embedded electronics and the modification of the chosen toy helicopter are presented, and the technique used for state estimation is described. The fusion of inertial data through an unscented Kalman filter is used to estimate the helicopter’s state, and this forms the main input to the control system. Since no detailed dynamic model of the helicopter in use is available, a method is proposed for automated system identification, and for subsequent controller design based on artificial evolution. Preliminary results obtained with a dynamic simulator of a helicopter are reported, along with some encouraging results for tackling the problem of flocking.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reynolds, C.: Flocks, herds, and schools: A distributed behavioral model. Proceedings of the Conference on Computer Graphics (SIGGRAPH) 21(4), 25–34 (1987)

    Article  MathSciNet  Google Scholar 

  2. Mataric, M.: Interaction and intelligent behavior. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA (1995)

    Google Scholar 

  3. Kelly, I., Keating, D.: Flocking by the fusion of sonar and active infrared sensors on physical autonomous mobile robots. In: Proceedings of The Third Int. Conf. on Mechatronics and Machine Vision in Practice, vol. 1, pp. 1–4 (1996)

    Google Scholar 

  4. Welsby, J., Melhuish, C.: Autonomous minimalist following in three dimensions: A study with small-scale dirigibles. In: Proceedings of Towards Intelligent Mobile Robots, Manchester (2001)

    Google Scholar 

  5. Crowther, B., Riviere, X.: Flocking of autonomous unmanned air vehicles. In: Proceeding of the 17th UAV System conference, Bristol, UK (2002)

    Google Scholar 

  6. NASA, D.F.R.C.: New flight software allows UAVs to team up for virtual fire experiment. http://www.nasa.gov/centers/dryden/news/NewsReleases/2005/05-12.html

  7. Calise, A., Preston, D.: Swarming/flocking and collision avoidance for mass airdrop of autonomous guided parafoils. In: AIAA Guidance, Navigation, and Control Conference and Exhibit (2005)

    Google Scholar 

  8. Jadbabaie, A., Lin, J., Morse, A.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Automatic Control 48, 998–1001 (2003)

    Google Scholar 

  9. Tanner, H., Jadbabaie, A., Pappas, G.: Stable flocking of mobile agents. part I: Static topology. In: Proceedings of the 42nd IEEE Conference on Decision and Control, pp. 2010–2015. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  10. Tanner, H., Jadbabaie, A., Pappas, G.: Stable flocking of mobile agents. part II: Dynamic topology. In: Proceedings of the 42nd IEEE Conference on Decision and Control, pp. 2016–2021. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  11. Gazi, V., Fidan, B.: Review of control and coordination of multi-agent dynamic systems: models and approaches. In: Sahin, E., Spears, W., Winfield, A. (eds.) SAB 2006. LNCS, Springer, Heidelberg (2006)

    Google Scholar 

  12. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Transaction on Automatic Control 51 (2006)

    Google Scholar 

  13. [ERROR while converting LaTeX/Unicode], A., Gazi, V., Koku, B.: An empirical study on the motion of self-propelled particles with turn angle restrictions. In: Sahin, E., Spears, W., Winfield, A. (eds.) SAB 2006. LNCS, Springer, Heidelberg (2006)

    Google Scholar 

  14. Hirobo Limited: XRB Lama helicopter. http://model.hirobo.co.jp/products/0301-905/index.html

  15. Holland, O.E., Woods, J., De Nardi, R., Clark, A.: Beyond swarm intelligence: The UltraSwarm. In: Proceedings of the IEEE Swarm Intelligence Symposium (SIS2005), IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  16. Memsense: nIMU nano inertial measurement unit. http://www.memsense.com/content/products/Datasheets/nIMUv1_92.pdf

  17. Jun, M., Roumeliotis, S., Sukhatme, G.S.: State estimation via sensor modeling for helicopter control using an indirect kalman filter. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Los Alamitos (1999)

    Google Scholar 

  18. Gavrilets, V.: Autonomous Aerobatic Manouvering of Miniature. PhD thesis, Massachusetts Institute of Technology (2003)

    Google Scholar 

  19. van der Merwe, R., Wan, E.A.: Sigma-point kalman filters for integrated navigation. In: 60th Annual Meeting of The Institute of Navigation (ION) (2004)

    Google Scholar 

  20. van der Merwe, R., Wan, E.A.: The square-root unscented kalman filter for state and parameter-estimation. In: International Conference on Acoustics, Speech, and Signal Processing (2001)

    Google Scholar 

  21. Mettler, B., Tischler, M., Kanade, T.: System identification of a model-scale helicopter. Technical Report CMU-RI-TR-00-03, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (2000)

    Google Scholar 

  22. La Civita, M., Messner, W.C., Kanade, T.: Modeling of small-scale helicopters with integrated first-principles and system-identification techniques. In: American helicopter society 58th annual forum (2002)

    Google Scholar 

  23. Abbeel, P., Ganapathi, V., Ng, A.Y.: Modeling vehicular dynamics, with application to modeling helicopters. In: Neural Information Processing Systems (2005)

    Google Scholar 

  24. Nolfi, S., Floreano, D.: Evolutionary robotics. MIT Press, Cambridge (2000)

    Google Scholar 

  25. Togelius, J., Lucas, S.M.: Evolving controllers for simulated car racing. In: Proceedings of the Congress on Evolutionary Computation (2005)

    Google Scholar 

  26. Togelius, J., Lucas, S.M.: Forcing neurocontrollers to exploit sensory symmetry through hard-wired modularity in the game of cellz. In: Proceedings of the IEEE 2005 Symposium on Computational Intelligence and Games CIG05, pp. 37–43 (2005)

    Google Scholar 

  27. Ng, A., Kim, H., Jordan, M., Sastry, S., Ballianda, S.: Autonomous helicopter flight via reinforcement learning. Advances in Neural Information Processing Systems (2004)

    Google Scholar 

  28. Ng, A., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B., Berger, E., Liang, E.: Autonomous inverted helicopter flight via reinforcement learning. In: Proceedings of the International Symposium on Experimental Robotics (2004)

    Google Scholar 

  29. De Nardi, R., Togelius, J., Holland, O., Lucas, S.: Neural networks for helicopter control: Why modularity matters. In: IEEE Congress on Evolutionary Computation, IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  30. Autopilot: Do it yourself UAV. http://autopilot.sourceforge.net

Download references

Author information

Authors and Affiliations

Authors

Editor information

Erol Şahin William M. Spears Alan F. T. Winfield

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

De Nardi, R., Holland, O. (2007). UltraSwarm: A Further Step Towards a Flock of Miniature Helicopters. In: Şahin, E., Spears, W.M., Winfield, A.F.T. (eds) Swarm Robotics. SR 2006. Lecture Notes in Computer Science, vol 4433. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71541-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71541-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71540-5

  • Online ISBN: 978-3-540-71541-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics