Skip to main content

Reconfiguration Strategies for Environmentally Powered Devices: Theoretical Analysis and Experimental Validation

  • Conference paper
Transactions on High-Performance Embedded Architectures and Compilers I

Part of the book series: Lecture Notes in Computer Science ((THIPEAC,volume 4050))

Abstract

Environmental energy is becoming a feasible alternative to traditional energy sources for ultra low-power devices such as sensor nodes. These devices can run reactive applications that adapt their control flow depending on the sensed data. In order to reduce the energy consumption of the platform and also to meet the timing constraints imposed by the application, we propose to dynamically reconfigure the system through the use of Field Programmable Gate Array (FPGA) fabric such that it executes more efficiently the tasks of the application.

In this paper we present a new approach that enables the designer to efficiently explore different reconfiguration strategies for environmentally powered systems. For this we define a stochastic model of a harvesting video sensor node that captures the behavior of the node and of its environment. We use this approach to investigate the impact of different reconfiguration strategies for a video surveillance node on metrics of interest, such as the expected lifetime or downtime of the system.

Then, we create a hardware implementation of an energy-aware reconfiguration manager on top of a custom multi-FPGA board.

Our results show that the systems improve their processing capabilities if suitable reconfiguration strategies are defined for their respective configuration environments.

This article builds upon a paper prepared for the third conference on Computing Frontiers, 2006.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. FPSLIC (AVR with FPGA) from Atmel, ATMEL Corporation - http://www.atmel.com/products/FPSLIC/

  2. Alur, R., Henzinger, T.A.: Reactive modules. Form. Methods Syst. Des. 15(1), 7–48 (1999)

    Article  Google Scholar 

  3. Barrenetxea, G., Dubois-Ferriere, H., Meier, R., Selker, J.: A weather station for SensorScope. In: Demo Session, In Information Processing in Sensor Networks (IPSN 2006) (2006)

    Google Scholar 

  4. Benini, L., Bogliolo, A., De Micheli, G.: A survey of design techniques for system-level dynamic power management. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 8(3), 299–316 (2000)

    Article  Google Scholar 

  5. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic systems. FSTTCS: Foundations of Software Technology and Theoretical Computer Science 15 (1995), citeseer.ist.psu.edu/bianco95model.html

  6. Chen, B., Jamieson, K., Balakrishnan, H., Morris, R.: Span: an energy-efficient coordination algorithm for topology maintenance in ad hoc wireless networks. Wirel. Netw. 8(5), 481–494 (2002)

    Article  MATH  Google Scholar 

  7. Cheng, X., Narahari, B., Simha, R., Cheng, M.X., Liu, D.: Strong minimum energy topology in wireless sensor networks: Np-completeness and heuristics. IEEE Transactions on Mobile Computing 2(3), 248–256 (2003)

    Article  Google Scholar 

  8. Culler, D., Estrin, D., Srivastava, M.: Guest editors’ introduction: Overview of sensor networks. Computer 37(8), 41–49 (2004)

    Article  Google Scholar 

  9. Dubois-Ferriere, H.: Sensorscope presentation at NCCR-MICS WG2 (2005)

    Google Scholar 

  10. Elnozahy, E.N(M.), Alvisi, L., Wang, Y.-M., Johnson, D.B.: A survey of rollback-recovery protocols in message-passing systems. ACM Comput. Surv. 34(3), 375–408 (2002), doi:10.1145/568522.568525

    Article  Google Scholar 

  11. Enz, C.C., El-Hoiydi, A., Decotignie, J.-D., Peiris, V.: Wisenet: An ultralow-power wireless sensor network solution. Computer 37(8), 62–70 (2004)

    Article  Google Scholar 

  12. Feng, J., Koushanfar, F., Potkonjak, M.: System-architectures for sensor networks issues, alternatives, and directions. ICCD 00:226 (2002)

    Google Scholar 

  13. Hansson, H., Jonsson, B.: A logic for reasoning about time and probability. Formal Apsects of Computing 6 (1994)

    Google Scholar 

  14. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press, Cambridge (1999)

    Google Scholar 

  15. Kluter, T.: URLAP Processor, EPFL LAP Technical Report (2004)

    Google Scholar 

  16. Kogut, G., Blackburn, M., Everett, H.R.: Using video sensor networks to command and control unmanned ground vehicles. In: AUVSI Unmanned Systems in International Security (USIS) (2003)

    Google Scholar 

  17. Kwiatkowska, M., Norman, G., Parker, D.: Prism 2.0: A tool for probabilistic model checking. QEST 00:322–323 (2004)

    Google Scholar 

  18. Lach, J., Evans, D., McCune, J., Brandon, J.: Power-efficient adaptable wireless sensor networks. In: International Conference on Military and Aerospace Programmable Logic Devices (MAPLD) (2003)

    Google Scholar 

  19. Magli, E., Mancin, M., Merello, L.: Low-complexity video compression for wireless sensor networks. Proceedings of the International Conference on Multimedia and Expo, ICME 2003, 3:585–588 (2003)

    Google Scholar 

  20. McIntire, D., Ho, K., Yip, B., Singh, A., Wu, W., Kaiser, W.J.: The low power energy aware processing (leap)embedded networked sensor system. In: IPSN ’06: Proceedings of the fifth international conference on Information processing in sensor networks, Nashville, Tennessee, USA, pp. 449–457. ACM Press, New York (2006), doi:10.1145/1127777.1127846

    Google Scholar 

  21. Paradiso, J.A., Starner, T.: Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing 4(1), 18–27 (2005)

    Article  Google Scholar 

  22. Rabaey, J.M., Ammer, M.J., da Silva, J.L., Patel, D., Roundy, S.: Picoradio supports ad hoc ultra-low power wireless networking. Computer 33(7), 42–48 (2000), doi:10.1109/2.869369

    Article  Google Scholar 

  23. Raja, K., Daskalopoulos, I., Diall, H., Hailes, S., Torfs, T., Van Hoof, C., Roussos, G.: Sensor Cubes: A modular, ultra-compact, power-aware platform for sensor networks. In: International Conference on Information Processing in Sensor Networks (IPSN SPOTS), April (2006)

    Google Scholar 

  24. Roundy, V.S., Leland, E.S., Baker, J., Carleton, E., Reilly, E., Lai, E., Otis, B., Rabaey, J.M., Wright, P.K., Sundararajan, V.: Improving power output for vibration-based energy scavengers. IEEE Pervasive Computing 4(1), 28–36 (2005)

    Article  Google Scholar 

  25. Sinha, A., Chandrakasan, A.: Dynamic power management in wireless sensor networks. IEEE Des. Test 18(2), 62–74 (2001), doi:10.1109/54.914626

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Şuşu, A.E., Magno, M., Acquaviva, A., Atienza, D., De Micheli, G. (2007). Reconfiguration Strategies for Environmentally Powered Devices: Theoretical Analysis and Experimental Validation . In: Stenström, P. (eds) Transactions on High-Performance Embedded Architectures and Compilers I. Lecture Notes in Computer Science, vol 4050. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71528-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71528-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71527-6

  • Online ISBN: 978-3-540-71528-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics