Skip to main content

Time Delays in Neural Systems

  • Chapter
Handbook of Brain Connectivity

Part of the book series: Understanding Complex Systems ((UCS))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atay FM (2003a) Distributed delays facilitate amplitude death of coupled oscillators. Phys. Rev. Lett. 91 (9), 094101

    Article  Google Scholar 

  • Atay FM (2003b) Total and partial amplitude death in networks of diffusively coupled oscillators. Physica D 183, 1–18

    Article  MATH  MathSciNet  Google Scholar 

  • Atay FM (2006) Oscillator death in coupled functional differential equations near Hopf bifurcation. J. Differential Equations 221 (1), 190–209

    Article  MATH  MathSciNet  Google Scholar 

  • BĂ©lair J, Campbell SA, van den Driessche P (1996) Frustration, stability and delay-induced oscillations in a neural network model. SIAM J. Applied Mathematics 56 (1), 245–255

    Article  MATH  Google Scholar 

  • Bernard S, BĂ©lair J, Mackey MC (2001) Sufficient conditions for stability of linear differential equations with distributed delay. Discrete and Continuous Dynamical Systems 1B, 233–256

    Google Scholar 

  • Breakspear M, Jirsa VK (2006) Neuronal dynamics and brain connectivity. In: McIntosh R, Jirsa VK (eds), Handbook of Brain Connectivity. Springer-Verlag, New York

    Google Scholar 

  • Burić N, Grozdanović I, Vasović N (2005) Type I vs. type II excitable systems with delayed coupling. Chaos, Solitons and Fractals 23, 1221–1233

    Article  MATH  MathSciNet  Google Scholar 

  • Burić N, Todorović D (2003) Dynamics of Fitzhugh-Nagumo excitable systems with delayed coupling. Physical Review E 67, 066222

    Article  MathSciNet  Google Scholar 

  • Burić N, Todorović D (2005) Bifurcations due to small time-lag in coupled excitable systems. International Journal of Bifurcations and Chaos 15 (5), 1775–1785

    Article  MATH  Google Scholar 

  • Campbell SA, Edwards R, van den Dreissche P (2004) Delayed coupling between two neural network loops. SIAM J. Applied Mathematics 65 (1), 316–335

    Article  MATH  Google Scholar 

  • Campbell SA, Ncube I (2006) Some effects of gamma distribution on the dynamics of a scalar delay differential equation. Preprint

    Google Scholar 

  • Campbell SA, Ncube I, Wu J (2006) Multistability and stable asynchronous periodic oscillations in a multiple-delayed neural system. Physica D 214 (2), 101–119

    Article  MATH  MathSciNet  Google Scholar 

  • Campbell SA, Smith A (2007) Phase models and delayed coupled Fitzhugh-Nagumo oscillators. Preprint

    Google Scholar 

  • Campbell SA, Yuan Y, Bungay S (2005) Equivariant Hopf bifurcation in a ring of identical cells with delayed coupling. Nonlinearity 18, 2827–2846

    Article  MATH  MathSciNet  Google Scholar 

  • Carson RG, Byblow WD, Goodman D (1994) The dynamical substructure of bimanual coordination. In: Swinnen S, Heuer H, Massion J, Casaer P (eds), Interlimb coordination: Neural, dynamical and cognitive constraints. Academic Press, San Diego, pp 319–337

    Chapter  Google Scholar 

  • Crook SM, Ermentrout GB, Vanier MC, Bower JM (1997) The role of axonal delay in the synchronization of networks of coupled cortical oscillators. J. Computational Neuroscience 4, 161–172

    Article  MATH  Google Scholar 

  • Cushing JM (1977) Integrodifferential Equations and Delay Models in Popluation Dynamics. Vol. 20 of Lecture Notes in Biomathematics. Springer-Verlag, Berlin; New York

    Google Scholar 

  • Desmedt JE, Cheron G (1980) Central somatosensory conduction in man: Neural generators and interpeak latencies of the far-field components recorded from neck and right or left scalp and earlobes. Electro. Clin. Electroencephalog. 50, 382–403

    Article  Google Scholar 

  • Dhamala M, Jirsa VK, Ding M (2004) Enhancement of neural synchrony by time delay. Physical Review E 92 (7), 074104

    Google Scholar 

  • Diekmann O, van Gils SA, Verduyn Lunel SM, Walther H-O (1995) Delay Equations. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  • Engelborghs K, Luzyanina T, Roose D (2002) Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM Transactions on Mathematical Software 28 (1), 1–21

    Article  MATH  MathSciNet  Google Scholar 

  • Engelborghs K, Luzyanina T, Samaey G (2001) DDE-BIFTOOL v. 2.00: a MATLABpackage for bifurcation analysis of delay differential equations. Tech. Rep. TW-330, Department of Computer Science, K.U. Leuven, Leuven, Belgium

    Google Scholar 

  • Ermentrout GB (1994) An introduction to neural oscillators. In: Ventriglia F (ed), Neural Modeling and Neural Networks. Pergamon, Oxford, UK, pp 79–110

    Chapter  Google Scholar 

  • Ermentrout GB (2002) Similating, Analyzing and Animating Dynamical Systems: A Guide to XPPAUT for Researcher and Students. SIAM, Philadelphia, PA

    Book  Google Scholar 

  • Ermentrout GB (2005) XPPAUT 5.91 – the differential equations tool. Department of Mathematics, University of Pittsburgh, Pittsburgh, PA

    Google Scholar 

  • Ermentrout GB, Kopell N (1998) Fine structure of neural spiking and synchronization in the presence of conduction delays. PNAS 95 (3), 1259–64

    Article  Google Scholar 

  • Fitzhugh R (1960) Thresholds and plateaus in the Hodgkin-Huxley nerve equations. J. General Physiology 43, 867

    Article  Google Scholar 

  • Foss J, Longtin A, Mensour B, Milton JG (1996) Multistability and delayed recurrent loops. Phys. Rev. Letters 76, 708–711

    Article  Google Scholar 

  • Foss J, Milton JG (2000) Multistability in recurrent loops arising from delay. J. Neurophysiol. 84, 975–985

    Google Scholar 

  • Foss J, Milton JG (2002) Multistability in delayed recurrent loops. In: Milton J, Jung P (eds), Epilepsy as a Dynamic Disease. Springer-Verlag, New York, pp 283–295

    Google Scholar 

  • Foss J, Moss F, Milton JG (1997) Noise, multistability and delayed recurrent loops. Phys. Rev. E 55, 4536–4543

    Article  Google Scholar 

  • Fox JJ, Jayaprakash C, Wang DL, Campbell SR (2001) Synchronization in relaxation oscillator networks with conduction delays. Neural Computation 13, 1003–1021

    Article  MATH  Google Scholar 

  • Golomb D, Ermentrout GB (1999) Continuous and lurching travelling pulses in neuronal networks with delay and spatially decaying connectivity. PNAS 96, 13480–13485

    Article  Google Scholar 

  • Golomb D, Ermentrout GB (2000) Effects of delay on the type and velocity of travelling pulses in neuronal networks with spatially decaying connectivity. Network: Comput. Neural Syst. 11, 221–246

    Article  MATH  Google Scholar 

  • Gopalsamy K, Leung I (1996) Delay induced periodicity in a neural netlet of excitation and inhibition. Physica D 89, 395–426

    Article  MATH  MathSciNet  Google Scholar 

  • Guckenheimer J, Holmes PJ (1983) Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  • Haken H, Kelso JAS, Bunz H (1985) A theoretical model of phase transitions in human hand movements. Biological Cybernetics 51, 347–356

    Article  MATH  MathSciNet  Google Scholar 

  • Hale JK, Verduyn Lunel SM (1993) Introduction to Functional Differential Equations. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  • Hoppensteadt FC, Izhikevich EM (1997) Weakly connected neural networks. Springer-Verlag, New York

    Book  Google Scholar 

  • Ikeda I, Matsumoto K (1987) High dimensional chaotic behaviour in systems with time-delayed feedback. Physica D 29, 223–235

    Article  MATH  Google Scholar 

  • Izhikevich EM (1998) Phase models with explicit time delays. Physical Review E 58 (1), 905–908

    Article  Google Scholar 

  • Jantzen KJ, Kelso JAS (2006) Neural coordination dynamics of human sensorimotor behaviour: A review. In: McIntosh R, Jirsa VK (eds), Handbook of Brain Connectivity. Springer-Verlag, New York

    Google Scholar 

  • Jirsa VK, Ding M (2004) Will a large complex system with delays be stable? Physical Review Letters 93, 070602

    Article  Google Scholar 

  • Karbowski J, Kopell N (2000) Multispikes and synchronization in a large neural network with temporal delays. Neural Computation 12, 1573–1606

    Article  Google Scholar 

  • Keener J, Sneyd J (1998) Mathematical Physiology. Springer-Velag, New York

    MATH  Google Scholar 

  • Kelso JAS (1984) Phase transitions and critical behaviour in human bimanual coordination. American J. Physiology: Regulatory, Integrative and Comparative Physiology 15, R1000–R1004

    Google Scholar 

  • Kelso JAS, Holt KG, Rubin P, Kugler PN (1981) Patterns of human interlimb coordination emerge from nonlinear limit cycle oscillatory processes: theory and data. J. Motor Behaviour 13, 226–261

    Article  Google Scholar 

  • Kleinfeld D, Raccuia-Behling F, Chiel HJ (1990) Circuits constructed from identified Aplysia neurons exhibit multiple patterns of activity. Biophysical J. 57 (4), 697–715

    Article  Google Scholar 

  • Koch C (1999) Biophysics of Computation. Oxford University Press, New York

    Google Scholar 

  • Kolmanovskii VB, Nosov VR (1986) Stability of functional differential equations. Vol. 180 of Mathematics in Science and Engineering. Academic Press

    Google Scholar 

  • Kopell N, Ermentrout GB (2002) Mechanisms of phase-locking and frequency control in pairs of coupled neural oscillators. In: Fiedler B (ed), Handbook of Dynamical Systems, vol 2: Toward Applications. Elsevier, Amsterdam

    Google Scholar 

  • Kopell N, Ermentrout GB, Whittington MA, Traub R (2000) Gamma rhythms and beta rhythms have different synchronization properties. PNAS 97 (4), 1867–1872

    Article  Google Scholar 

  • Kuznetsov YA (1995) Elements of Applied Bifurcation Theory. Vol. 112 of Applied Mathematical Sciences. Springer-Verlag, Berlin; New York

    Book  Google Scholar 

  • MacDonald N (1978) Time lags in biological models. Vol. 27 of Lecture notes in biomathematics. Springer-Verlag, Berlin; New York

    Book  Google Scholar 

  • Mackey MC, Van der Heiden U (1984) The dynamics of recurrent inhibition. J. Mathematical Biology 19, 211–225

    Article  MATH  Google Scholar 

  • Maex R, De Schutter E (2003) Resonant synchronization in heterogeneous networks of inhibitory neurons. J. Neuroscience 23 (33), 10503–10514

    Google Scholar 

  • Milton JG, Foss J (1997) Oscillations and multistability in delayed feedback control. In: Othmer HG, Adler FR, Lewis MA, Dallon JC (eds), The Art of Mathematical Modeling: Case Studies in Ecology, Physiology and Cell Biology. Prentice Hall, New York, pp 179–198

    Google Scholar 

  • Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070

    Article  Google Scholar 

  • Olgac N, Sipahi R (2002) An exact method for the stability analysis of time-delayed linear time-invariant (LTI) systems. IEEE Transactions on Automatic Control 47 (5), 793–797

    Article  MathSciNet  Google Scholar 

  • Olgac N, Sipahi R (2005) Complete stability robustness of third-order LTI multiple time-delay systems. Automatica 41, 1413–1422

    Article  MATH  MathSciNet  Google Scholar 

  • Plant RE (1981) A Fitzhugh differential-difference equation modeling recurrent neural feedback. SIAM J. Applied Mathematics 40 (1), 150–162

    Article  MATH  MathSciNet  Google Scholar 

  • Ramana Reddy DV, Sen A, Johnston GL (1998) Time delay induced death in coupled limit cycle oscillators. Physical Review Letters 80, 5109–5112

    Article  Google Scholar 

  • Ramana Reddy DV, Sen A, Johnston GL (1999) Time delay effects on coupled limit cycle oscillators at Hopf bifurcation. Physica D 129, 15–34

    Article  MATH  MathSciNet  Google Scholar 

  • Ramana Reddy DV, Sen A, Johnston GL (2000) Experimental evidence of time-delay-induced death in coupled limit-cycle oscillators. Physical Review Letters 85 (16), 3381–3384

    Article  Google Scholar 

  • Sen AK, Rand R (2003) A numerical investigation of the dynamics of a system of two time-delayed coupled relaxation oscillators. Communications on Pure and Applied Mathematics 2 (4), 567–577

    MATH  MathSciNet  Google Scholar 

  • Shampine LF, Thompson S (2001) Solving DDEs in MATLAB. Applied Numerical Mathematics 37, 441–458

    Article  MATH  MathSciNet  Google Scholar 

  • Shayer LP, Campbell SA (2000) Stability, bifurcation and multistability in a system of two coupled neurons with multiple time delays. SIAM J. Applied Mathematics 61 (2), 673–700

    Article  MATH  MathSciNet  Google Scholar 

  • Shepherd G (1994) Neurobiology. Oxford University Press, New York

    Google Scholar 

  • Skinner FK, Bazzazi H, Campbell SA (2005a) Two-cell to n-cell heterogeneous, inhibitory networks: precise linking of multistable and coherent properties. J. Computational Neuroscience 18 (3), 343–352

    Article  MathSciNet  Google Scholar 

  • Skinner FK, Chung JYJ, Ncube I, Murray PA, Campbell SA (2005b) Using heterogeneity to predict inhibitory model characteristics. J. Neurophysiology 93, 1898–1907

    Article  Google Scholar 

  • StĂ©pĂ¡n G (1989) Retarded Dynamical Systems. Vol. 210 of Pitman Research Notes in Mathematics. Longman Group, Essex

    Google Scholar 

  • Strogatz SH (1998) Death by delay. Nature 394, 316–317

    Article  Google Scholar 

  • Terman D, Wang DL (1995) Global competition and local cooperation in a network of neural oscillators. Physica D 81, 148–176

    Article  MATH  MathSciNet  Google Scholar 

  • Thiel A, Schwegler H, Eurich CW (2003) Complex dynamics is abolished in delayed recurrent systems with distributed feedback times. Complexity 8 (4), 102–108

    Article  MathSciNet  Google Scholar 

  • van Vreeswijk C, Abbott LF, Ermentrout GB (1994) When inhibition not excitation synchronizes neural firing. J. Computational Neuroscience 1, 313–321

    Article  Google Scholar 

  • Wang X-J, BuzsĂ¡ki G (1998) Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J. Neuroscience 16 (20), 6–16

    Google Scholar 

  • Wang X-J, Rinzel J (1992) Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Computation 4, 84–97

    Article  Google Scholar 

  • Wang X-J, Rinzel J (1993) Spindle rhythmicity in the reticularis thalami nucleus: synchronization among mutually inhibitory neurons. Neuroscience 53, 899–904

    Article  Google Scholar 

  • White JA, Chow CC, Ritt J, Soto-Trevino C, Kopell N (1998) Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. J. Computational Neuroscience 5, 5–16

    Article  MATH  Google Scholar 

  • Wirkus S, Rand R (2002) The dynamics of two coupled van der Pol oscillators with delay coupling. Nonlinear Dynamics 30, 205–221

    Article  MATH  MathSciNet  Google Scholar 

  • Wischert W, Wunderlin A, Pelster A, Olivier M, Groslambert J (1994) Delay-induced instabilities in nonlinear feedback systems. Physical Review E 49 (1), 203–219

    Article  MathSciNet  Google Scholar 

  • Wu J, Faria T, Huang YS (1999) Synchronization and stable phase-locking in a network of neurons with memory. Math. Comp. Modelling 30 (1-2), 117–138

    Article  MATH  MathSciNet  Google Scholar 

  • Yuan Y, Campbell SA (2004) Stability and synchronization of a ring of identical cells with delayed coupling. J. Dynamics and Differential Equations 16 (1), 709–744

    Article  MATH  MathSciNet  Google Scholar 

  • Zhou J, Chen T, Lan Z (2004a) Robust synchronization of coupled delayed recurrent neural networks. In: Advances in Neural Networks - ISNN 2004. Vol. 3173 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, pp 144–149

    Google Scholar 

  • Zhou S, Liao Z, Yu J, Wong K (2004b) Chaos and its synchronization in two-neuron systems with discrete delays. Chaos, Solitons and Fractals 21, 133–142

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Campbell, S.A. (2007). Time Delays in Neural Systems. In: Jirsa, V.K., McIntosh, A. (eds) Handbook of Brain Connectivity. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71512-2_2

Download citation

Publish with us

Policies and ethics