Skip to main content

Multichannel Data Analysis in Biomedical Research

  • Chapter

Part of the book series: Understanding Complex Systems ((UCS))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achermann P, Hartmann R, Gunzinger A, Guggenbühl W, Borbély AA. All night sleep and artificial stochastic control have similar correlation dimension. Electroenceph Clin Neurophys 1994; 90:384–387.

    Article  Google Scholar 

  • Akaike H. On the use of a linear model for the identification of feedback systems. Ann Inst Stat Math 1968; 20: 425–40.

    Article  MATH  MathSciNet  Google Scholar 

  • Akaike H. A new look at statistical model identification. IEEE Trans Autom Control 1974; 19: 716–23.

    Article  MATH  MathSciNet  Google Scholar 

  • Anderson TW. An introduction to multivariate statistical analysis. John Wiley & Sons, 1984.

    Google Scholar 

  • Arnold M, Miltner WHR, Bauer R, Braun C. Multivariate autoregressive modeling of nonstationary time series by means of Kalman filtering. IEEE Trans Biomed Eng 1998; 45: 553–62.

    Article  Google Scholar 

  • Baccalá LA, Sameshima K. Directed coherence: a tool for exploring functional interactions among brain structures. In: Methods for neural ensemble recordings. CRC Methods In Neuroscience series, CRC Press, Boca Raton, 1998.

    Google Scholar 

  • Baccalá LA, Sameshima K. Overcoming the limitations of correlation analysis for many simultaneously processed neural structures. Progress Brain Res 2001; 130: 33–47.

    Article  Google Scholar 

  • Baccalá LA, Sameshima K. Partial directed coherence: a new concept in neural structure determination. Biol Cybern 2001; 84: 463–74.

    Article  MATH  Google Scholar 

  • Baccalá LA, Sameshima K, Ballester G, Do Valle AC, Timo-Iaria C. Studying the interaction between brain structures via directed coherence and Granger causality. App Sig Proc 1998; 5: 40–48.

    Article  Google Scholar 

  • Benveniste A, Metivier M, Priouret P. Adaptive algorithms and stochastic approximations. Springer-Verlag, 1990.

    Google Scholar 

  • Blinowska KJ. New trends in electrophysiological signals parameterization and feature extraction. Technol Health Care 1994; 2: 93–110.

    Google Scholar 

  • Blinowska KJ, Czerwosz LT, Drabik W, Franaszczuk PJ, Ekiert H. EEG data reduction by means of autoregressive representation and discriminant analysis procedures. Electroenceph Clin Neurophys 1981; 51: 650–8.

    Article  Google Scholar 

  • Blinowska KJ, Kuś R, Kamiński M. Granger causality and information flow in multivariate processes. Phys Rev E 2004; 70: 050902, Virt J Biol Phys Res 2004; 8(11).

    Google Scholar 

  • Blinowska KJ, Malinowski M. Non-linear and linear forecasting of the EEG time series. Biol Cybern 1991; 66: 159–165.

    Article  Google Scholar 

  • Box G, Jenkins GM, Reinsel G. Time series analysis: forecasting and control. Prentice Hall, 1994.

    Google Scholar 

  • Box GEP, Tiao GC Bayesian inference in statistical analysis. John Wiley, NY, 1992.

    Book  MATH  Google Scholar 

  • Brillinger DR. Comparative aspects of the study of ordinary time series and point processes. Devel Stat 1978; 5: 33–133.

    Article  MathSciNet  Google Scholar 

  • Caines PE, Chan CW. Feedback between stationary stochastic processes. IEEE Trans Autom Control 1975; 20: 498–508.

    Article  MATH  MathSciNet  Google Scholar 

  • Chavez M, Martinerie J, Le Van Quyen M. Statistical assessment of nonlinear causality: application to epileptic EEG signals. J Neurosci Meth 2003; 124: 113–28.

    Article  Google Scholar 

  • Chen Y, Rangarajan G, Feng J, Ding M. Analyzing multiple nonlinear time series with extended Granger causality. Phys Lett A 2004; 324:26–35.

    Article  MATH  MathSciNet  Google Scholar 

  • Crone NE, Miglioretti DL, Gordon B, Sieracki JM, Wilson MT, Uematsu S, Lesser RP. Fuctional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization. Brain 1998a; 121:2271–99. AU: Please provide citation for this reference 2

    Article  Google Scholar 

  • Crone NE, Miglioretti DL, Gordon B, Lesser RP. Fuctional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain 1998b; 121:2301–15. AU: Please provide citation for this reference

    Article  Google Scholar 

  • David O, Cosmelli D, Friston KJ. Evaluation of different measures of functional connectivity using a neural mass model. NeuroImage 2004; 21: 659–73.

    Article  Google Scholar 

  • Ding M, Bressler SL, Yang W, Liang H. Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modeling: data preprocessing, model validation, and variability assessment. Biol Cybern 2000; 83: 35–45.

    Article  MATH  Google Scholar 

  • Eichler M. On the evaluation of information flow in multivariate systems by the directed transfer function. Biol Cybern 2006; 94(6): 469–82.

    Article  MATH  MathSciNet  Google Scholar 

  • Efron B. Bootstrap methods: another look at the jackknife. Ann Stat 1979; 7: 1–26.

    Article  MATH  MathSciNet  Google Scholar 

  • Efron B, Tibshirani RJ. An introduction to the bootstrap. Chapman & Hall, 1993.

    Google Scholar 

  • Fenwick PBC, Mitchie P, Dollimore J, Fenton GW. Application of the autoregressive model to EEG analysis. Agressologie 1969; 10: 553–64.

    Google Scholar 

  • Fenwick PBC, Mitchie P, Dollimore J, Fenton GW. Mathematical simulation of the electroencephalogram using an autoregressive series. Int J Bio-Med Comput 1971; 2: 281–307.

    Article  Google Scholar 

  • Franaszczuk PJ, Bergey GK. Application of the directed transfer function method to mesial and lateral onset temporal lobe seizures. Brain Topogr 1998; 11: 13–21.

    Article  Google Scholar 

  • Franaszczuk PJ, Bergey GK, Kamiński M. Analysis of mesial temporal seizure onset and propagation using the directed transfer function method. Electroenceph Clin Neurophys 1994; 91: 413–27.

    Article  Google Scholar 

  • Franaszczuk PJ, Blinowska KJ. Linear model of brain electrical activity – EEG as a superposition of damped oscillatory modes. Biol Cybern 1985; 53: 19–25.

    Article  MATH  Google Scholar 

  • Freiwald WA, Valdes P, Bosch J, Biscay R, Jimenez JC, Rodriguez LM, Rodriguez V, Kreiter AK, Singer W. Testing non-linearity and directedness of interactions between neural groups in the macaque inferotemporal cortex. J Neurosci Meth 1999; 94: 105–19.

    Article  Google Scholar 

  • French AS, Holden AV. Alias-free sampling of neuronal spike trains. Biol Cyb 1971; 8(5):165–171.

    Google Scholar 

  • Gath I, Feuerstein C, Pham DT, Rondouin G. On the tracking of rapid dynamic changes in seizure EEG. IEEE Trans Biomed Eng 1992; 39:952–8.

    Article  Google Scholar 

  • Gersch W. Causality or driving in electrophysiological signal analysis. Math Biosci 1972; 14: 177–96.

    Article  Google Scholar 

  • Gersch W. Spectral analysis of EEG’s by autoregressive decomposition of time series. Math Biosci 1970; 7: 205–22.

    Article  MATH  Google Scholar 

  • Gersch W. Non-stationary multichannel time series analysis. In: Handbook of electroencephalography and clinical neurophysiology; Vol. 1: Methods of analysis of brain electrical and magnetic signal. Amsterdam: Elsevier, 261–296, 1987.

    Google Scholar 

  • Gersch W, Tharp BR. Spectral regression-amount of information analysis of seizures in humans. In: Kellaway P, Petersen I, editors. Quantitative Analytic Studies in Epilepsy. New York: Raven Press, 509–532, 1976.

    Google Scholar 

  • Gersch W, Yonemoto J. Parametric time series models for multivariate EEG analysis. Comput Biomed Res 1977, 10:113–25.

    Google Scholar 

  • Gevers MR, Anderson BDO. Representations of jointly stationary stochastic feedback processes. Int J Control 1981; 33: 777–809.

    Article  MATH  MathSciNet  Google Scholar 

  • Granger CWJ. Investigating causal relations in by econometric models and cross-spectral methods. Econometrica 1969; 37: 424–38.

    Article  Google Scholar 

  • Hamilton JD. Time series analysis. Princeton, NJ: Princeton Univ. 1994. AU: Please provide the year for this reference

    MATH  Google Scholar 

  • Harrison L, Penny WD, Friston K. Multivariate autoregressive modeling of fMRI time series. NeuroImage 2003; 19: 1477–91.

    Article  Google Scholar 

  • Hayes MH. Statistical digital signal processing and modeling. New York: Wiley & Sons, 1996.

    Google Scholar 

  • Hesse W, Möller E, Arnold M, Schack B. The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies. J Neurosci Meth 2003; 124: 27–44.

    Article  Google Scholar 

  • Hjorth B. An on-line transformation of EEG scalp potentials into orthogonal source EEG channels. Electroenceph Clin Neurophys 1975; 39:526–30.

    Article  Google Scholar 

  • Isaksson A, Wennberg A, Zetterberg LH. Computer analysis of EEG signals with parametric models. Proc IEEE 1981; 69: 451–61.

    Article  Google Scholar 

  • Jansen BH. Analysis of biomedical signals by means of linear modeling. CRC Crit Rev Biomed Eng 1985; 12(4):343–92.

    Google Scholar 

  • Jenkins GM, Watts DG. Spectral analysis and its applications. SF: Holden-Day, 1968.

    Google Scholar 

  • Kamiński M. Determination of transmission patterns in multichannel data. Philosophical Transactions of The Royal Society B, 2005, 360: 947–952.

    Article  Google Scholar 

  • Kamiński M, Blinowska KJ. A new method of the description of the information flow in the brain structures. Biol Cybern 1991; 65: 203–10.AU: Please provide citation for this reference

    Article  MATH  Google Scholar 

  • Kamiński M, Blinowska KJ, Szelenberger W. Investigation of coherence structure and EEG activity propagation during sleep. Acta Neurobiol Exp 1995; 55: 213–9.

    Google Scholar 

  • Kamiński M, Blinowska KJ, Szelenberger W. Topographic analysis of coherence and propagation of EEG activity during sleep and wakefulness. Electroenceph Clin Neurophys 1997; 102: 216–27.

    Article  Google Scholar 

  • Kamiński M, Blinowska KJ, Szelenberger W. Topographic %representation of coherence and directions of EEG activity flow in %brains. Acta Neurobiol Exp 1995; 55: 10.AU: Please provide citation for this reference

    Google Scholar 

  • Kamiński M, Ding M, Truccolo W, Bressler S. Evaluating causal relations in neural systems: Granger causality, directed transfer function and statisticalassessment of significance. Biol Cybern 2001; 85: 145–57.

    Article  MATH  Google Scholar 

  • Kamiński M, Kocsis B. Direction of the theta rhythmic drive between neurons in the supramammillary nucleus (SUM) and the septohippocampal system in urethane anesthetized rats. Neurosci Abs 2003; 29: 938. 13.AU: Please provide citation for this reference

    Google Scholar 

  • Kamiński M, Liang H. Causal influence: advances in neurosignal analysis. Critical Reviews in Biomedical Engineering, 2005; 33 (4): 347–430.

    Article  Google Scholar 

  • Kamiński M. , Zygierewicz J, Kuś R, Crone N. Analysis of multichannel biomedical data. Acta Neurobiologiae Experimentalis, 2005, 65(4): 443–452.

    Google Scholar 

  • Kamitake T, Harashima H, Miyakawa H. A time-series analysis method based on the directed transinformation. Electronics and Communications in Japan 1984;67-A(6).

    Google Scholar 

  • Kay SM. Modern spectral estimation. Englewood Cliffs, NJ: Prentice Hall, 1988.

    MATH  Google Scholar 

  • Kelly EF, Lenz JE, Franaszczuk PJ, Truong YK. A general statistical framework for frequency-domain analysis of EEG topographic structure. Comput Biomed Res 1997; 30: 129–64.

    Article  Google Scholar 

  • Kemp B, Lopes da Silva FH. Model-based analysis of neurophysiological signals. In: Weitkunat R, editor. Digital biosignal processing, Amsterdam: Elsevier, 129–155, 1991.

    Google Scholar 

  • Kitagawa G, Gersch W. Smoothness priors analysis of time series. Lecture Notes in Statistics, NY: Springer, 116, 1996.

    Book  Google Scholar 

  • Kocsis B. , Kamiński M. Dynamic changes in the direction of the theta rhythmic drive between supramammillary nucleus and the septohippocampal system. Hippocampus 2006; 16 (6): 531–40.

    Article  Google Scholar 

  • Korhonen I, Mainardi L, Baselli G, Bianchi A, Loula P, Carrault G. Linear multivariate models for physiological signal analysis: applications. Comput Meth Prog Biomedic 1996; 51: 121–30.

    Article  Google Scholar 

  • Korzeniewska A, Manczak M, Kamiński M, Blinowska KJ, Kasicki S. Determination of information flow direction between brain structures by a modified Directed Transfer Function method (dDTF). J Neurosci Meth 2003; 125: 195–207.

    Article  Google Scholar 

  • Kuś R, Kamiński M, Blinowska KJ. Determination of EEG activity propagation: pair-wise versus multichannel estimate. IEEE Trans Biomed Eng 2004; 51:1501–10.

    Article  Google Scholar 

  • Liang H, Ding M, Bressler SL. Temporal Dynamics Of Information Flow In The Cerebral Cortex. Neurocomputing 2001; 38–40:1429–35.

    Google Scholar 

  • Lutkepohl H. Introduction To Multiple Time Series Analysis. NY: Springer, 1993.

    Book  Google Scholar 

  • Marple SL. Digital Spectral Analysis With Applications Prentice-Hall Signal Processing Series. New Jersey: Simon & Schuster, 1987.

    Google Scholar 

  • Möller E, Schack B, Arnold M, Witte H. Instantaneous multivariate EEG coherence analysis by means of adaptive high-dimensional autoregressive models. J Neurosci Meth 2001; 105: 143–58.

    Article  Google Scholar 

  • Morf M, Vieira A, Lee D, Kailath T. Recursive multichannel maximum entropy spectral estimation. IEEE Trans Geosci Electronics 1978; 16:85–94.

    Google Scholar 

  • Oppenheim AV, Schafer RW. Discrete-time signal processing. Prentice Hall. NJ: Englewood Cliffs, 1989.

    MATH  Google Scholar 

  • Penny WD, Roberts SJ. Bayesian multivariate autoregressive models with structured priors. IEE Proc Vision Image Sig Proc 2002; 149:33–41.

    Article  Google Scholar 

  • Pijn JPM, Van Neerven L, Noest A, Lopes da Silva FH. Chaos or noise in EEG signals: dependence on state and brain site. Electroenceph Clin Neurophys 1991; 79: 371–381.

    Article  Google Scholar 

  • Pijn JPM, Velis DN, van der Heyden MJ, DeGoede J, van Veelen CWM, Lopes da Silva FH. Nonlinear dynamics of epileptic seizures on basis of intracranial EEG recordings. Brain Topogr 1997; 9: 249–270.

    Article  Google Scholar 

  • Priestley MB. Spectral analysis and time series. Academic Press, 1981.

    Google Scholar 

  • Proakis JG, Manolakis DG. Digital signal processing: principles, algorithms and applications. Prentice Hall. NJ: Englewood Cliffs, 1996.

    Google Scholar 

  • Rechtschaffen A, Kales A. A manual: standardized terminology, techniques and scoring system for sleep stages of human subjects. Brain Information Service. Brain Research Institute, UCLA, 1968.

    Google Scholar 

  • Saito Y, Harashima H. Tracking of information within multichannel record: causal analysis in EEG. In Yamaguchi N, Fujisawa K, editors. Recent Advances in EEG and EMG Data Processing. Amsterdam: Elsevier 1981, 133–146.

    Google Scholar 

  • Sameshima K, Baccalá LA. Using partial directed coherence to describe neuronal ensemble interactions. J Neurosci Meth 1999; 94: 93–103.

    Article  Google Scholar 

  • Schack B, Grieszbach G, Arnold M, Bolten J. Dynamic cross-spectral analysis of biological signals by means of bivariate ARMA process with time-dependent coefficients. Med & Biol Eng & Comput 1995; 33: 605–10.

    Article  Google Scholar 

  • Schack B, Krause W. Dynamic power and coherence analysis of ultra short-term cognitive process, a cognitive study. Brain Topogr 1995; 9: 127–36.

    Article  Google Scholar 

  • Schneider T, Neumaier A. Estimation of Parameters and Eigenmodes of Multivariate Autoregressive Models. ACM Trans Math Soft 2001; 27:27–57,58–65.

    Article  Google Scholar 

  • Schnider SM, Kwong RH, Lenz FA, Kwan HC. Detection of feedback in the central nervous system using system identification techniques. Biol Cybern 1989;60:203–12.

    Article  MATH  Google Scholar 

  • Spyers-Ashby JM, Bain PG, Roberts SJ. A comparison of fast Fourier transform (FFT) and autoregressive (AR) spectral estimation techniques for the analysis of tremor data. J Neurosci Meth 1998; 83: 35–43.

    Article  Google Scholar 

  • Stam C, Pijn JPM, Suffczyski P, Lopes da Silva FH. Dynamics of the human alpha rhythm: evidence for non-linearity? Clin Neurophys 1999; 110: 1801–1813.

    Article  Google Scholar 

  • Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer D. Testing for nonlinearity in time series: the method of surrogate data. Physica D 1992; 58: 77–94.

    Article  MATH  Google Scholar 

  • Veeramani B, Narayanan K, Prasad A, Iasemidis LD, Spanias AS, Tsakalis K. Measuring the direction and the strength of coupling in nonlinear systems – a modeling approach in the state space. IEEE Sig Proc Lett 2004; 11: 617–620.

    Article  Google Scholar 

  • Whittle P. On the fitting of multivariate autoregressions and the approximate factorization of a spectral matrix. Biometrika 1963; 50: 129–34.

    Article  MATH  MathSciNet  Google Scholar 

  • Zetterberg L. Estimation of parameters for a linear difference equation with application to EEG analysis. Math Biosci 1969; 5: 227–75.

    Article  MATH  MathSciNet  Google Scholar 

  • Zetterberg L. Experience with analysis and simulation of EEG signals with parametric description of spectra. In: Kellaway P, Petersen I, editors. Automation of Clinical Electroencephalography, NY: Raven Press, 161–201 227–234, 1973.

    Google Scholar 

  • Zhu L, Lai Y-C, Hoppensteadt FC, He J. Probing changes in neural interaction during adaptation. Neural Comput 2003; 15: 2359–77.

    Article  MATH  Google Scholar 

  • Zoubir AM, Boashash B. The bootstrap and its application in signal processing. IEEE Sig Proc Mag 1998; 15: 56–76.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kamiński, M. (2007). Multichannel Data Analysis in Biomedical Research. In: Jirsa, V.K., McIntosh, A. (eds) Handbook of Brain Connectivity. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71512-2_11

Download citation

Publish with us

Policies and ethics