Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4418))

  • 1757 Accesses

Abstract

In this paper we propose an original method to animate a crowd of virtual beings in a virtual environment. Instead of relying on models to describe the motions of people along time, we suggest to use a priori knowledge on the dynamic of the crowd acquired from videos of real crowd situations. In our method this information is expressed as a time-varying motion field which accounts for a continuous flow of people along time. This motion descriptor is obtained through optical flow estimation with a specific second order regularization. Obtained motion fields are then used in a classical fixed step size integration scheme that allows to animate a virtual crowd in real-time. The power of our technique is demonstrated through various examples and possible follow-ups to this work are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrade, E., Blunsden, S., Fisher, R.: Modelling crowd scenes for event detection. In: Int. Conf. on Pattern Recognitiion, ICPR 2006, pp. 175–178 (2006)

    Google Scholar 

  2. Barron, J., Fleet, D., Beauchemin, S.: Performance of optical flow techniques. Int. J. Computer Vision 12(1), 43–77 (1994)

    Article  Google Scholar 

  3. Bhat, K., et al.: Flow-based video synthesis and editing. ACM Transactions on Graphics (Special issue, Proceedings ACM SIGGRAPH 2004) 23(3), 360–363 (2004)

    Article  Google Scholar 

  4. Black, M.: Recursive non-linear estimation of discontinuous flow fields. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 800, pp. 138–145. Springer, Heidelberg (1994)

    Google Scholar 

  5. Blue, V.: Cellular automata microsimulation for modeling bi-directional pedestrian walkways. Transportation Research, Part B: Methodological 35(3), 293–312 (2001)

    Article  Google Scholar 

  6. Bouvier, E., Cohen, E., Najman, L.: From crowd simulation to airbag deployment: particle systems, a new paradigm of simulation. Journal of Electronic Imaging 6(1), 94–107 (1997)

    Article  Google Scholar 

  7. Braun, A., Raupp Musse, S.: Modeling individual behaviors in crowd simulation. In: Proc. of Computer Animation and Social Agents (CASA’03), New Jersey, USA (May 2003)

    Google Scholar 

  8. Bregler, C., et al.: Turning to the masters: Motion capturing cartoons. ACM Transactions on Graphics (Special issue, Proceedings ACM SIGGRAPH 2002) 21(3), 320–328 (2002)

    Article  Google Scholar 

  9. Chai, J., Xiao, J., Hodgins, J.: Vision-based control of 3d facial animation. In: Eurographics/ACM SIGGRAPH Symposium on Computer Animation, Grenoble, France, August 2003, pp. 79–87 (2003)

    Google Scholar 

  10. Corpetti, T., et al.: Fluid experimental flow estimation based on an optical-flow scheme. Experiments in fluids 40(1), 80–97 (2006)

    Article  Google Scholar 

  11. Corpetti, T., Mémin, E., Pérez, P.: Dense estimation of fluid flows. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(3), 365–380 (2002)

    Article  Google Scholar 

  12. Courty, N., Musse, S.: Simulation of Large Crowds Including Gaseous Phenomena. In: Proc. of IEEE Computer Graphics International 2005, New York, USA, June 2005, pp. 206–212. IEEE Computer Society Press, Los Alamitos (2005)

    Chapter  Google Scholar 

  13. Crisan, D.: Particle filters, a theoretical perspective. In: de Freitas, N., Doucet, A., Gordon, N. (eds.) Sequential Monte-Carlo Methods in Practice, Springer, Heidelberg (2001)

    Google Scholar 

  14. Favreau, L., et al.: Animal gaits from video. In: Eurographics/ACM SIGGRAPH Symposium on Computer Animation, Grenoble, France (August 2004)

    Google Scholar 

  15. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407(1), 487–490 (2000)

    Article  Google Scholar 

  16. Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  17. Huber, P.: Robust Statistics. John Wiley & Sons, Chichester (1981)

    MATH  Google Scholar 

  18. Hughes, R.L.: The flow of human crowds. Annual revue of Fluid. Mech. 20(10), 169–182 (2003)

    Article  Google Scholar 

  19. Le-Dimet, F.X., Talagrand, O.: Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus, 97–110 (1986)

    Google Scholar 

  20. Mémin, E., Pérez, P.: Dense estimation and object-based segmentation of the optical flow with robust techniques. IEEE Trans. Image Processing 7(5), 703–719 (1998)

    Article  Google Scholar 

  21. Mitiche, A., Bouthemy, P.: Computation and analysis of image motion: a synopsis of current problems and methods. Int. J. Computer Vision 19(1), 29–55 (1996)

    Article  Google Scholar 

  22. Raupp Musse, S., Thalmann, D.: Hierarchical model for real time simulation of virtual human crowds. IEEE Trans. on Visualization and Computer Graphics 7(2), 152–164 (2001)

    Article  Google Scholar 

  23. Shao, W., Terzopoulos, D.: Animating autonomous pedestrians. In: Proc. SIGGRAPH/EG Symposium on Computer Animation (SCA’05), Los Angeles, CA, July 2005, pp. 19–28 (2005)

    Google Scholar 

  24. Sung, M., Gleicher, M., Chenney, S.: Scalable behaviors for crowd simulation. Comput. Graph. Forum 23(3), 519–528 (2004)

    Article  Google Scholar 

  25. Suter, D.: Motion estimation and vector splines. In: Proc. Conf. Comp. Vision Pattern Rec., Seattle, USA, June 1994, pp. 939–942 (1994)

    Google Scholar 

  26. Treuille, A., Cooper, S., Popovic, Z.: Continuum crowds. ACM Transactions on Graphics (Special issue, Proceedings ACM SIGGRAPH 2006) 25(3), 1160–1168 (2006)

    Article  Google Scholar 

  27. Weickert, J., Schnörr, C.: A theoretical framework for convex regularizers in PDE-based computation of image motion. Int. J. of Computer Vision 45(3), 245–264 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

André Gagalowicz Wilfried Philips

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Courty, N., Corpetti, T. (2007). Data-Driven Animation of Crowds. In: Gagalowicz, A., Philips, W. (eds) Computer Vision/Computer Graphics Collaboration Techniques. MIRAGE 2007. Lecture Notes in Computer Science, vol 4418. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71457-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71457-6_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71456-9

  • Online ISBN: 978-3-540-71457-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics