Skip to main content

A Unified Feature Extraction Architecture

  • Conference paper
Active Flow Control

Abstract

We present a unified feature extraction architecture consisting of only three core algorithms that allows to extract and track a rich variety of geometrically defined, local and global features evolving in scalar and vector fields. The architecture builds upon the concepts of Feature Flow Fields and Connectors, which can be implemented using the three core algorithms finding zeros, integrating and intersecting stream objects. We apply our methods to extract and track the topology and vortex core lines both in steady and unsteady flow fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.C. Banks and B.A. Singer. A predictor-corrector technique for visualizing unsteady flow. IEEE Transactions on Visualization and Computer Graphics, 1(2):151–163, 1995.

    Article  Google Scholar 

  2. E. Caraballo, M. Samimy, and DeBonis J. Low dimensional modeling of flow for closedloop flow control. AIAA Paper 2003-0059.

    Google Scholar 

  3. W. de Leeuw and R. van Liere. Collapsing flow topology using area metrics. In Proc. IEEE Visualization’ 99, pages 149–354, 1999.

    Google Scholar 

  4. C. Garth, X. Tricoche, and G. Scheuermann. Tracking of vector field singularities in unstructured 3D time-dependent datasets. In Proc. IEEE Visualization 2004, pages 329–336, 2004.

    Google Scholar 

  5. A. Globus, C. Levit, and T. Lasinski. A tool for visualizing the topology of three-dimensional vector fields. In Proc. IEEE Visualization’ 91, pages 33–40, 1991.

    Google Scholar 

  6. J. Helman and L. Hesselink. Representation and display of vector field topology in fluid flow data sets. IEEE Computer, 22(8):27–36, August 1989.

    Google Scholar 

  7. J. Hultquist. Constructing stream surfaces in steady 3D vector fields. In Proc. IEEE Visualization’ 92, pages 171–177, 1992.

    Google Scholar 

  8. J. Jeong and F. Hussain. On the identification of a vortex. J. Fluid Mechanics, 285:69–94, 1995.

    Article  MATH  Google Scholar 

  9. S.K. Lodha, J.C. Renteria, and K.M. Roskin. Topology preserving compression of 2D vector fields. In Proc. IEEE Visualization 2000, pages 343–350, 2000.

    Google Scholar 

  10. N. Max, B. Becker, and R. Crawfis. Flow volumes for interactive vector field visualization. In Proc. Visualization 93, pages 19–24, 1993.

    Google Scholar 

  11. B.R. Noack and H. Eckelmann. A low-dimensional galerkin method for the three-dimensional flow around a circular cylinder. Phys. Fluids, 6:124–143, 1994.

    Article  MATH  Google Scholar 

  12. R. Peikert and M. Roth. The parallel vectors operator-a vector field visualization primitive. In Proc. IEEE Visualization 99, pages 263–270, 1999.

    Google Scholar 

  13. F.H. Post, B. Vrolijk, H. Hauser, R.S. Laramee, and H. Doleisch. Feature extraction and visualisation of flow fields. In Proc. Eurographics 2002, State of the Art Reports, pages 69–100, 2002.

    Google Scholar 

  14. M. Roth and R. Peikert. Flow visualization for turbomachinery design. In Proc. Visualization 96, pages 381–384, 1996.

    Google Scholar 

  15. M. Roth and R. Peikert. A higher-order method for finding vortex core lines. In D. Ebert, H. Hagen, and H. Rushmeier, editors, Proc. IEEE Visualization’ 98, pages 143–150, Los Alamitos, 1998. IEEE Computer Society Press.

    Google Scholar 

  16. G. Scheuermann, H. Krüger, M. Menzel, and A. Rockwood. Visualizing non-linear vector field topology. IEEE Transactions on Visualization and Computer Graphics, 4(2):109–116, 1998.

    Article  Google Scholar 

  17. D. Stalling, M. Westerhoff, and H.-C. Hege. Amira: A highly interactive system for visual data analysis. The Visualization Handbook, pages 749–767, 2005.

    Google Scholar 

  18. D. Sujudi and R. Haimes. Identification of swirling flow in 3D vector fields. Technical report, Department of Aeronautics and Astronautics, MIT, 1995. AIAA Paper 95-1715.

    Google Scholar 

  19. H. Theisel. Designing 2D vector fields of arbitrary topology. Computer Graphics Forum (Eurographics 2002), 21(3):595–604, 2002.

    Article  Google Scholar 

  20. H. Theisel, J. Sahner, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Extraction of parallel vector surfaces in 3d time-dependent fields and application to vortex core line tracking. In Proc. IEEE Visualization 2005, pages 631–638, 2005.

    Google Scholar 

  21. H. Theisel and H.-P. Seidel. Feature flow fields. In Data Visualization 2003. Proc. VisSym 03, pages 141–148, 2003.

    Google Scholar 

  22. H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Saddle connectors-an approach to visualizing the topological skeleton of complex 3D vector fields. In Proc. IEEE Visualization 2003, pages 225–232, 2003.

    Google Scholar 

  23. H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Grid-independent detection of closed stream lines in 2D vector fields. In Proc. Vision, Modeling and Visualization 2004, 2004.

    Google Scholar 

  24. H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Topological methods for 2D time-dependent vector fields based on stream lines and path lines. IEEE Transactions on Visualization and Computer Graphics, 11(4):383–394, 2005.

    Article  Google Scholar 

  25. X. Tricoche, G. Scheuermann, and H. Hagen. Continuous topology simplification of planar vector fields. In Proc. Visualization 01, pages 159–166, 2001.

    Google Scholar 

  26. Xavier Tricoche, Christoph Garth, Gordon Kindlmann, Eduard Deines, Gerik Scheuermann, Markus Ruetten, and Charles Hansen. Visualization of intricate flow structures for vortex breakdown analysis. In Proc. IEEE Visualization 2004, pages 187–194, 2004.

    Google Scholar 

  27. T. Weinkauf, H. Theisel, H.-C. Hege, and H.-P. Seidel. Boundary switch connectors for topological visualization of complex 3D vector fields. In Data Visualization 2004. Proc. VisSym 04, pages 183–192, 2004.

    Google Scholar 

  28. T. Weinkauf, H. Theisel, H.-C. Hege, and H.-P. Seidel. Topological construction and visualization of higher order 3D vector fields. Computer Graphics Forum (Eurographics 2004), 23(3):469–478, 2004.

    Article  Google Scholar 

  29. T. Weinkauf, H. Theisel, H.-C. Hege, and H.-P. Seidel. Feature flow fields in out-of-core settings. In Proc. Topo-In-Vis 2005, Budmerice, Slovakia, 2005.

    Google Scholar 

  30. T. Weinkauf, H. Theisel, K. Shi, H.-C. Hege, and H.-P. Seidel. Topological simplification of 3d vector fields by extracting higher order critical points. In Proc. IEEE Visualization 2005, pages 559–566, 2005.

    Google Scholar 

  31. R. Westermann, C. Johnson, and T. Ertl. Topology-preserving smoothing of vector fields. IEEE Transactions on Visualization and Computer Graphics, 7(3):222–229, 2001.

    Article  Google Scholar 

  32. T. Wischgoll and G. Scheuermann. Detection and visualization of closed streamlines in planar flows. IEEE Transactions on Visualization and Computer Graphics, 7(2):165–172, 2001.

    Article  Google Scholar 

  33. H.-Q. Zhang, U. Fey, B.R. Noack, M. König, and H. Eckelmann. On the transition of the cylinder wake. Phys. Fluids, 7(4):779–795, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weinkauf, T., Sahner, J., Theisel, H., Hege, HC., Seidel, HP. (2007). A Unified Feature Extraction Architecture. In: King, R. (eds) Active Flow Control. Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), vol 95. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71439-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71439-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71438-5

  • Online ISBN: 978-3-540-71439-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics