Skip to main content

Electromagnetic Control of Separated Flows Using Periodic Excitation with Different Wave Forms

  • Conference paper
Active Flow Control

Abstract

Time periodic Lorentz forces have been used to influence the separated flow on an inclined flat plate in deep stall at a Reynolds number of 104. The influence of the control parameters effective momentum coefficient and excitation frequency as well as excitation wave form is discussed based on phase averaged PIV measurements. As expected, control authority depends strongly on momentum input and excitation frequency, but effects of the excitation wave form can be shown as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gad-el Hak, M.: Flow control: passive, active, and reactive flow management. Cambridge University Press (2000)

    Google Scholar 

  2. Wygnanski, I.: Boundary layer and flow control by periodic addition of momentum. AIAA-paper 97-2117 (1997)

    Google Scholar 

  3. Greenblatt, D., Wygnanski, I.: The control of flow separation by periodic excitation. Prog. Aero. Sci. 36 (2000) 487–545

    Article  Google Scholar 

  4. Seifert, A., Greenblatt, D., Wygnanski, I.: Active separation control: an overview of Reynolds and Mach number effects. Aerosp. Sci. Techn. 8 (2004) 569–582

    Article  Google Scholar 

  5. Sutton, G., Sherman, A.: Engineering Magnetohydrodynamics. McGraw Hill, New York (1965)

    Google Scholar 

  6. Crausse, É., Cachon, P.: Actions électromagnétiques sur les liquides en mouvement, notamment dans la couche limite d’ obstacles immergés. Comptes rendus hebdomadaires des séances de l’ Académie des Sciences 238 (1954) 2488–2490

    Google Scholar 

  7. Lielausis, O.: Effect of electromagnetic forces on the flow of liquid metals and electrolytes. PhD thesis, Academy of Sciences of the Latvian SSR, Institute of Physics, Riga (1961) in Russian.

    Google Scholar 

  8. Gailitis, A., Lielausis, O.: On a possibility to reduce the hydrodynamic resistance of a plate in an electrolyte. Appl. Magnetohydrodynamics, Rep. Phys. Inst. 12 (1961) 143–146 in Russian.

    Google Scholar 

  9. Tsinober, A.B., Shtern, A.G.: On the possibility to increase the stability of the flow in the boundary layer by means of crossed electric and magnetic fields. Magnitnaya Gidrodinamica 3 (1967) 152–154 (in Russian).

    Google Scholar 

  10. Meyer, R.: Magnetohydrodynamic method and apparatus. US Patent 3,360,220 (1967)

    Google Scholar 

  11. Shtern, A.: Feasibility of modifying the boundary layer by crossed electric and magnetic fields. Magnitnaya Gidrodinamika 6 (1970) 124–128

    Google Scholar 

  12. Nosenchuck, D., Brown, G., Culver, H., Eng, T., Huang, I.: Spatial and temporal characteristics of boundary layers controlled with the lorentz force. In: 12th Australian Fluid Mechanics Conference, Sydney (1995)

    Google Scholar 

  13. Henoch, C., Stace, J.: Experimental investigation of a salt water turbulent boundary layer modified by an applied streamwise magnetohydrodynamic body force. Phys. Fluids 7 (1995) 1371–1383

    Article  Google Scholar 

  14. Crawford, C.H., Karniadakis, G.E.: Reynolds stress analysis of EMHD-controlled wall turbulence. Part I. Streamwise forcing. Phys. Fluids 9 (1997) 788–806

    Article  Google Scholar 

  15. Berger, T.W., Kim, J., Lee, C., Lim, J.: Turbulent boundary layer control utilizing the lorentz force. Phys. Fluids 12 (2000) 631–649

    Article  Google Scholar 

  16. Du, Y., Symeonidis, V., Karniadakis, G.: Drag reduction in wall-bounded turbulence via a transverse travelling wave. J. Fluid Mech. 457 (2002) 1–34

    Article  MATH  MathSciNet  Google Scholar 

  17. Weier, T., Gerbeth, G., Mutschke, G., Platacis, E., Lielausis, O.: Experiments on cylinder wake stabilization in an electrolyte solution by means of electromagnetic forces localized on the cylinder surface. Experimental Thermal and Fluid Science 16 (1998) 84–91

    Article  Google Scholar 

  18. Kim, S., Lee, C.: Investigation of the flow around a circular cylinder under the influence of an electromagnetic force. Exp. Fluids 28 (2000) 252–260

    Article  Google Scholar 

  19. Posdziech, O., Grundmann, R.: Electromagnetic control of seawater flow around circular cylinders. European Journal of Mechanics-B/Fluids 20 (2001) 255–274

    Article  MATH  Google Scholar 

  20. Chen, Z., Aubry, N.: Active control of cylinder wake. Communications in Nonlinear Science and Numerical Simulation 10 (2005) 205–216

    Article  MATH  Google Scholar 

  21. Weier, T., Gerbeth, G., Mutschke, G., Lielausis, O., Lammers, G.: Control of flow separation using electromagnetic forces. Flow, Turbulence and Combustion 71 (2003) 5–17

    Article  MATH  Google Scholar 

  22. Weier, T., Gerbeth, G.: Control of separated flows by time periodic Lorentz forces. Eur. J. Mech. B/Fluids 23 (2004) 835–849

    Article  MATH  Google Scholar 

  23. Bouras, C., Nagib, H., Durst, F., Heim, U.: Lift and drag control on a lambda wing using leading-edge slot pulsation of various wave forms. Bulletin of the American Physical Society 45 (2000) 30

    Google Scholar 

  24. Wiltse, J., Glezer, A.: Manipulation of free shear flows using piezoelectric actuators. J. Fluid Mech. 249 (1993) 261–285

    Article  Google Scholar 

  25. Margalit, S., Greenblatt, D., Seifert, A., Wygnanski, I.: Active flow control of a delta wing at high incidence using segmented piezoelectric actuators. In: 1st Flow Control Conference, St. Louis, MO (2002) AIAA-paper 2002-3270.

    Google Scholar 

  26. Pack, L.G., Scheffler, N.W., Yao, C.S.: Active control of separation from the slat shoulder of a supercritical airfoil. In: 1st Flow Control Conference, St. Louis, MO (2002) AIAA-paper 2002-3156.

    Google Scholar 

  27. Washburn, A., Amitay, M.: Active flow control on the stingray UAV: Physical mechanism. In: 42nd Aerospace Sciences Meeting & Exhibit, Reno, NV (2004) AIAA-paper 2004-0745.

    Google Scholar 

  28. PackMelton, L.G., Yao, C.S., Seifert, A.: Application of excitation from multiple locations on a simplified high-lift system. In: 2nd Flow Control Conference, Portland, OR (2004) AIAA-paper 2004-2324.

    Google Scholar 

  29. Chang, R., Hsiao, F.B., Shyu, R.N.: Forcing level effects of internal acoustic excitation on the improvement of airfoil performance. J. Aircraft 29 (1992) 823–829

    Article  Google Scholar 

  30. Wu, J.Z., Lu, X.Y., Denny, A., Fan, M., Wu, J.M.: Post-stall flow control on an airfoil by local unsteady forcing. J. Fluid Mech. 371 (1998) 21–58

    Article  MATH  MathSciNet  Google Scholar 

  31. Kiedaisch, J., Demanett, B., Nagib, H.: Active flow control of large separation: A new look at scaling parameters. In: 58th Annual Meeting of the APS Division of Fluid Dynamics. (2005)

    Google Scholar 

  32. Rice, W.: Propulsion system. US Patent 2,997,013 (1961)

    Google Scholar 

  33. Grienberg, E.: On determination of properties of some potential fields. Applied Magnetohydrodynamics. Reports of the Physics Institute 12 (1961) 147–154 (in Russian).

    Google Scholar 

  34. Weier, T., Fey, U., Gerbeth, G., Mutschke, G., Lielausis, O., Platacis, E.: Boundary layer control bymeans of wall parallel Lorentz forces. Magnetohydrodynamics 37 (2001) 177–186

    Google Scholar 

  35. Weier, T., Gerbeth, G., Fey, U., Mutschke, G., Posdziech, O., Platacis, E., Lielausis, O.: Some results on electromagnetic control of flow around bodies. In: Int. Symp. on Seawater Drag Reduction. (1998) 229–235

    Google Scholar 

  36. Amitay, M., Glezer, A.: Role of actuation frequency in controlled flow reattachement over a stalled airfoil. AIAA J. 40 (2002) 209–216

    Google Scholar 

  37. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285 (1995) 69–94

    Article  MATH  MathSciNet  Google Scholar 

  38. Schmitz, F.: Aerodynamik des Flugmodells. Tragflügelmessungen I. C.J.E. Volckmann Nachf. E. Wette, Berlin-Charlottenburg (1942)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cierpka, C., Weier, T., Gerbeth, G. (2007). Electromagnetic Control of Separated Flows Using Periodic Excitation with Different Wave Forms. In: King, R. (eds) Active Flow Control. Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), vol 95. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71439-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71439-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71438-5

  • Online ISBN: 978-3-540-71439-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics