Skip to main content

The Taming of the Shrew: Why Is It so Difficult to Control Turbulence?

  • Conference paper
Active Flow Control

Abstract

In the present chapter I shall emphasize the frontiers of the field of flow control, pondering mostly the control of turbulent flows. I shall review the important advances in the field that took place during the past few years and are anticipated to dominate progress in the future. By comparison with laminar flow control or separation prevention, the control of turbulent flow remains a very challenging problem. Flow instabilities magnify quickly near critical flow regimes, and therefore delaying transition or separation are relatively easier tasks. In contrast, classical control strategies are often ineffective for fully turbulent flows. Newer ideas for turbulent flow control to achieve, for example, skin-friction drag reduction focus on the direct onslaught on coherent structures. Spurred by the recent developments in chaos control, microfabrication and soft computing tools, reactive control of turbulent flows, where sensors detect oncoming coherent structures and actuators attempt to favorably modulate those quasi-periodic events, is now in the realm of the possible for future practical devices. In this chapter, I shall provide estimates for the number, size, frequency and energy consumption of the sensor/ actuator arrays needed to control the turbulent boundary layer on a full-scale aircraft or submarine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abergel, F., and Temam, R. (1990) “On Some Control Problems in Fluid Mechanics,” Theor. Comput. Fluid Dyn. 1, pp. 303–325.

    Article  MATH  Google Scholar 

  • Alshamani, K.M.M., Livesey, J.L., and Edwards, F.J. (1982) “Excitation of the Wall Region by Sound in Fully Developed Channel Flow,” AIAA J. 20, pp. 334–339.

    Google Scholar 

  • Aubry, N. (1990) “Use of Experimental Data for an Efficient Description of Turbulent Flows,” Appl. Mech. Rev. 43, pp. S240–S245.

    MathSciNet  Google Scholar 

  • Aubry, N., Holmes, P., Lumley, J.L., and Stone, E. (1988) “The Dynamics of Coherent Structures in the Wall Region of a Turbulent Boundary Layer,” J. Fluid Mech. 192, pp. 115–173.

    Article  MATH  MathSciNet  Google Scholar 

  • Auerbach, D. (1994) “Controlling Extended Systems of Chaotic Elements,” Phys. Rev. Lett. 72, pp. 1184–1187.

    Article  Google Scholar 

  • Auerbach, D., Grebogi, C., Ott, E., and Yorke, J.A. (1992) “Controlling Chaos in High Dimensional Systems,” Phys. Rev. Lett. 69, pp. 3479–3482.

    Article  MATH  MathSciNet  Google Scholar 

  • Bandyopadhyay, P.R. (1986) “Review—Mean Flow in Turbulent Boundary Layers Disturbed to Alter Skin Friction,” J. Fluids Eng. 108, pp. 127–140.

    Article  Google Scholar 

  • Banks, S.P. (1986) Control Systems Engineering, Prentice-Hall International, Englewood Cliffs, New Jersey.

    MATH  Google Scholar 

  • Barnwell, R.W., and Hussaini, M.Y., editors (1992) Natural Laminar Flow and Laminar Flow Control, Springer-Verlag, New York.

    Google Scholar 

  • Berkooz, G., Fisher, M., and Psiaki, M. (1993) “Estimation and Control of Models of the Turbulent Wall Layer,” Bul. Am. Phys. Soc. 38, p. 2197.

    Google Scholar 

  • Berkooz, G., Holmes, P., and Lumley, J.L. (1991) “Intermittent Dynamics in Simple Models of the Turbulent Boundary Layer,” J. Fluid Mech. 230, pp. 75–95.

    Article  MATH  MathSciNet  Google Scholar 

  • Bewley, T.R., Moin, P., and Temam, R. (1997) “Optimal and Robust Approaches for Linear and Nonlinear Regulation Problems in Fluid Mechanics,” AIAA Paper No. 97-1872, Reston, Virginia.

    Google Scholar 

  • Bewley, T.R., Temam, R., and Ziane, M. (1998) “A General Framework for Robust Control in FluidMechanics,” Center for Turbulence Research No. CTR-Manuscript-169, Stanford University, Stanford, California.

    Google Scholar 

  • Blackwelder, R.F. (1998) “Some Notes on Drag Reduction in the Near-Wall Region,” in Flow Control: Fundamentals and Practices, eds. M. Gad-el-Hak, A. Pollard and J.-P. Bonnet, pp. 155–198, Springer-Verlag, Berlin.

    Google Scholar 

  • Blackwelder R.F., and Gad-el-Hak M. (1990) “Method and Apparatus for Reducing Turbulent Skin Friction,” United States Patent No. 4,932,612.

    Google Scholar 

  • Blackwelder, R.F., and Swearingen, J.D. (1990) “The Role of Inflectional Velocity Profiles in Wall Bounded Flows,” in Near-Wall Turbulence: 1988 Zoran Zarić Memorial Conference, eds. S.J. Kline and N.H. Afgan, pp. 268–288, Hemisphere, New York.

    Google Scholar 

  • Breuer, K.S., Haritonidis, J.H., and Landahl, M.T. (1989) “The Control of Transient Disturbances in a Flat Plate Boundary Layer through Active Wall Motion,” Phys. Fluids A 1, pp. 574–582.

    Article  Google Scholar 

  • Bushnell, D.M. (1983) “Turbulent Drag Reduction for External Flows,” AIAA Paper No. 83-0227, New York.

    Google Scholar 

  • Bushnell, D.M. (1994) “Viscous Drag Reduction in Aeronautics,” Proc. Nineteenth Congress of the International Council of the Aeronautical Sciences, vol. 1, pp. XXXIII–LVI, paper no. ICAS-94-0.1, AIAA, Washington, D.C.

    Google Scholar 

  • Bushnell, D.M., and Hefner, J.N., editors (1990) Viscous Drag Reduction in Boundary Layers, AIAA, Washington, D.C.

    Google Scholar 

  • Bushnell, D.M., and McGinley, C.B. (1989) “Turbulence Control in Wall Flows,” Annu. Rev. Fluid Mech. 21, pp. 1–20.

    Article  Google Scholar 

  • Cantwell, B.J. (1981) “Organized Motion in Turbulent Flow,” Ann. Rev. Fluid Mech. 13, pp. 457–515.

    Article  Google Scholar 

  • Chen, C.-C., Wolf, E.E., and Chang, H.-C. (1993) “Low-Dimensional Spatiotemporal Thermal Dynamics on Nonuniform Catalytic Surfaces,” J. Phys. Chemistry 97, pp. 1055–1064.

    Article  Google Scholar 

  • Choi, H., Moin, P., and Kim, J. (1992) “Turbulent Drag Reduction: Studies of Feedback Control and Flow Over Riblets,” Department of Mechanical Engineering Report No. TF-55, Stanford University, Stanford, California.

    Google Scholar 

  • Choi, H., Moin, P., and Kim, J. (1994) “Active Turbulence Control for Drag Reduction in Wall-Bounded Flows,” J. Fluid Mech. 262, pp. 75–110.

    Article  MATH  Google Scholar 

  • Choi, H., Temam, R., Moin, P., and Kim, J. (1993) “Feedback Control for Unsteady Flow and Its Application to the Stochastic Burgers Equation,” J. Fluid Mech. 253, pp. 509–543.

    Article  MATH  MathSciNet  Google Scholar 

  • Coller, B.D., Holmes, P., and Lumley, J.L. (1994a) “Control of Bursting in Boundary Layer Models,” Appl. Mech. Rev. 47, no. 6, part 2, pp. S139–S143.

    Google Scholar 

  • Coller, B.D., Holmes, P., and Lumley, J.L. (1994b) “Control of Noisy Heteroclinic Cycles,” Physica D 72, pp. 135–160.

    Article  MATH  MathSciNet  Google Scholar 

  • Corino, E.R., and Brodkey, R.S. (1969) “A Visual Investigation of the Wall Region in Turbulent Flow,” J. Fluid Mech. 37, pp. 1–30.

    Article  Google Scholar 

  • Corke, T.C., Glauser, M.N., and Berkooz, G. (1994) “Utilizing Low-Dimensional Dynamical Systems Models to Guide Control Experiments,” Appl. Mech. Rev. 47, no. 6, part 2, pp. S132–S138.

    Google Scholar 

  • Deane, A.E., and Sirovich, L. (1991) “A Computational Study of Rayleigh-Bénard Convection. Part 1. Rayleigh-Number Scaling,” J. Fluid Mech. 222, pp. 231–250.

    Article  MATH  MathSciNet  Google Scholar 

  • Delville, J., Cordier L., Bonnet J.-P. (1998) “Large-Scale-Structure Identification and Control in Turbulent Shear Flows,” in Flow Control: Fundamentals and Practices, eds. M. Gad-el-Hak, A. Pollard and J.-P. Bonnet, pp. 199–273, Springer-Verlag, Berlin.

    Google Scholar 

  • Ditto, W.L., and Pecora, L.M. (1993) “Mastering Chaos,” Scientific American 269, August, pp. 78–84.

    Article  Google Scholar 

  • Ditto, W.L., Rauseo, S.N., and Spano, M.L. (1990) “Experimental Control of Chaos,” Phys. Rev. Lett. 65, pp. 3211–3214.

    Article  Google Scholar 

  • Fan, X., Hofmann, L., and Herbert, T. (1993) “Active Flow Control with Neural Networks,” AIAA Paper No. 93-3273, Washington, D.C.

    Google Scholar 

  • Fiedler, H.E., and Fernholz, H.-H. (1990) “On Management and Control of Turbulent Shear Flows,” Prog. Aero. Sci. 27, pp. 305–387.

    Article  MATH  Google Scholar 

  • Fowler, T.B. (1989) “Application of Stochastic Control Techniques to Chaotic Nonlinear Systems,” IEEE Trans. Autom. Control 34, pp. 201–205.

    Article  MATH  MathSciNet  Google Scholar 

  • Gad-el-Hak, M. (1989) “Flow Control,” Appl. Mech. Rev. 42, pp. 261–293.

    Google Scholar 

  • Gad-el-Hak, M. (1993) “Innovative Control of Turbulent Flows,” AIAA Paper No. 93-3268, Washington, D.C.

    Google Scholar 

  • Gad-el-Hak, M. (1994) “Interactive Control of Turbulent Boundary Layers: A Futuristic Overview,” AIAA J. 32, pp. 1753–1765.

    Article  Google Scholar 

  • Gad-el-Hak, M. (1996) “Modern Developments in Flow Control,” Appl. Mech. Rev. 49, pp. 365–379.

    Article  Google Scholar 

  • Gad-el-Hak, M. (1998) “Frontiers of Flow Control,” in Flow Control: Fundamentals and Practices, eds. M. Gad-el-Hak, A. Pollard and J.-P. Bonnet, pp. 109–153, Springer-Verlag, Berlin.

    Google Scholar 

  • Gad-el-Hak, M. (2000) Flow Control: Passive, Active, and Reactive Flow Management, Cambridge University Press, London, United Kingdom.

    MATH  Google Scholar 

  • Gad-el-Hak, M. (editor) (2006) The MEMS Handbook, second edition, vol. I–III, CRC Taylor & Francis, Boca Raton, Florida.

    Google Scholar 

  • Gad-el-Hak, M., and Blackwelder, R.F. (1987) “A Drag Reduction Method for Turbulent Boundary Layers,” AIAA Paper No. 87-0358, New York.

    Google Scholar 

  • Gad-el-Hak, M., and Blackwelder, R.F. (1989) “Selective Suction for Controlling Bursting Events in a Boundary Layer,” AIAA J. 27, pp. 308–314.

    Google Scholar 

  • Gad-el-Hak, M., and Bushnell, D.M. (1991) “Separation Control: Review,” J. Fluids Eng. 113, pp. 5–30.

    Google Scholar 

  • Gad-el-Hak, M., and Hussain, A.K.M.F. (1986) “Coherent Structures in a Turbulent Boundary Layer. Part 1. Generation of’ Artificial’ Bursts,” Phys. Fluids 29, pp. 2124–2139.

    Article  Google Scholar 

  • Garfinkel, A., Spano, M.L., Ditto, W.L., and Weiss, J.N. (1992) “Controlling Cardiac Chaos,” Science 257, pp. 1230–1235.

    Article  Google Scholar 

  • Grappin, R., and Léorat, J. (1991) “Lyapunov Exponents and the Dimension of Periodic Incompressible Navier-Stokes Flows: Numerical Measurements,” J. Fluid Mech. 222, pp. 61–94.

    Article  MATH  MathSciNet  Google Scholar 

  • Hayes, S., Grebogi, C., and Ott, E. (1994a) “Communicating with Chaos,” Phys. Rev. Lett. 70, pp. 3031–3040.

    Article  Google Scholar 

  • Hayes, S., Grebogi, C., Ott, E., and Mark, A. (1994b) “Experimental Control of Chaos for Communication,” Phys. Rev. Lett. 73, pp. 1781–1784.

    Article  Google Scholar 

  • Ho, C.-M., and Tai, Y.-C. (1996) “Review: MEMS and Its Applications for Flow Control,” J. Fluids Eng. 118, pp. 437–447.

    Google Scholar 

  • Ho, C.-M., and Tai, Y.-C. (1998) “Micro-Electro-Mechanical Systems (MEMS) and Fluid Flows,” Annu. Rev. Fluid Mech. 30, pp. 579–612.

    Article  Google Scholar 

  • Holmes, P., Lumley, J.L., and Berkooz, G. (1996) Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press, Cambridge, Great Britain.

    MATH  Google Scholar 

  • Hu, H.H. and Bau, H.H. (1994) “Feedback Control to Delay or Advance Linear Loss of Stability in Planar Poiseuille Flow,” Proc. Roy. Soc. Lond. A 447, pp. 299–312.

    MATH  Google Scholar 

  • Huberman, B. (1990) “The Control of Chaos,” Proc. Workshop on Applications of Chaos, 4–7 December, San Francisco, California.

    Google Scholar 

  • Huberman, B.A., and Lumer, E. (1990) “Dynamics of Adaptive Systems,” IEEE Trans. Circuits Syst. 37, pp. 547–550.

    Article  Google Scholar 

  • Hübler, A., and Lüscher, E. (1989) “Resonant Stimulation and Control of Nonlinear Oscillators,” Naturwissenschaften 76, pp. 67–69.

    Article  Google Scholar 

  • Jacobs, J., James, R., Ratliff, C., and Glazer, A. (1993) “Turbulent Jets Induced by Surface Actuators,” AIAA Paper No. 93-3243, Washington, D.C.

    Google Scholar 

  • Jacobson, S.A., and Reynolds, W.C. (1993a) “Active Control of Boundary Layer Wall Shear Stress Using Self-Learning Neural Networks,” AIAA Paper No. 93-3272, AIAA, Washington, D.C.

    Google Scholar 

  • Jacobson, S.A., and Reynolds W.C. (1993b) “Active Boundary Layer Control Using Flush-Mounted Surface Actuators,” Bul. Am. Phys. Soc. 38, p. 2197.

    Google Scholar 

  • Jacobson, S.A., and Reynolds, W.C. (1994) “Active Control of Transition and Drag in Boundary Layers,” Bul. Am. Phy. Soc. 39, p. 1894.

    Google Scholar 

  • Jacobson, S.A., and Reynolds, W.C. (1995) “An Experimental Investigation Towards the Active Control of Turbulent Boundary Layers,” Department of Mechanical Engineering Report No. TF-64, Stanford University, Stanford, California.

    Google Scholar 

  • Jacobson, S.A., and Reynolds, W.C. (1998) “Active Control of Streamwise Vortices and Streaks in Boundary Layers,” J. Fluid Mech. 360, pp. 179–211.

    Article  MATH  Google Scholar 

  • James, R.D., Jacobs, J.W., and Glezer, A. (1994) “Experimental Investigation of a Turbulent Jet Produced by an Oscillating Surface Actuator,” Appl. Mech. Rev. 47, no. 6, part 2, pp. S127–S1131.

    Google Scholar 

  • Joslin, R.D. (1998) “Aircraft Laminar Flow Control,” Annu. Rev. Fluid Mech. 30, pp. 1–29.

    Article  Google Scholar 

  • Keefe, L.R. (1993a) “Two Nonlinear Control Schemes Contrasted in a Hydrodynamic Model,” Phys. Fluids A 5, pp. 931–947.

    Article  MathSciNet  Google Scholar 

  • Keefe, L.R. (1993b) “Drag Reduction in Channel Flow Using Nonlinear Control,” AIAA Paper No. 93-3279, Washington, D.C.

    Google Scholar 

  • Keefe, L.R. (1996) “A MEMS-Based Normal Vorticity Actuator for Near-Wall Modification of Turbulent Shear Flows,” Proc. Workshop on Flow Control: Fundamentals and Practices, eds. J.-P. Bonnet, M. Gad-el-Hak and A. Pollard, pp. 1–21, 1–5 July, Institut d’Etudes Scientifiques des Cargèse, Corsica, France.

    Google Scholar 

  • Keefe, L.R., Moin, P., and Kim, J. (1992) “The Dimension of Attractors Underlying Periodic Turbulent Poiseuille Flow,” J. Fluid Mech. 242, pp. 1–29.

    Article  MATH  MathSciNet  Google Scholar 

  • Kostelich, E.J., Grebogi, C., Ott, E., and Yorke, J.A. (1993a) “Targeting from Time Series,” Bul. Am. Phys. Soc. 38, p. 2194.

    Google Scholar 

  • Kostelich, E.J., Grebogi, C., Ott, E., and Yorke, J.A. (1993b) “Higher-Dimensional Targeting,” Phys. Rev. E 47, pp. 305–310.

    Article  MathSciNet  Google Scholar 

  • Kwong, A., and Dowling, A. (1993) “Active Boundary Layer Control in Diffusers,” AIAA Paper No. 93-3255, Washington, D.C.

    Google Scholar 

  • Lai, Y.-C., and Grebogi, C. (1993) “Synchronization of Chaotic Trajectories Using Control,” Phys. Rev. E 47, pp. 2357–2360.

    Article  MathSciNet  Google Scholar 

  • Lai, Y.-C., Deng, M., and Grebogi, C. (1993a) “Controlling Hamiltonian Chaos,” Phys. Rev. E 47, pp. 86–92.

    Article  MathSciNet  Google Scholar 

  • Lai, Y.-C., Grebogi, C., and Tél, T. (1994) “Controlling Transient Chaos in Dynamical Systems,” in Towards the Harnessing of Chaos, ed. M. Yamaguchi, Elsevier, Amsterdam, the Netherlands.

    Google Scholar 

  • Lai, Y.-C., Tél, T., and Grebogi, C. (1993b) “Stabilizing Chaotic-Scattering Trajectories Using Control,” Phys. Rev. E 48, pp. 709–717.

    Article  MathSciNet  Google Scholar 

  • Lindner, J.F., and Ditto, W.L. (1995) “Removal, Suppression and Control of Chaos by Nonlinear Design,” Appl. Mech. Rev. 48, pp. 795–808.

    Google Scholar 

  • Löfdahl, L., and Gad-el-Hak, M. (1999) “MEMS Applications in Turbulence and Flow Control,” Prog. Aero. Sci. 35, pp. 101–203.

    Article  Google Scholar 

  • Löfdahl, L., Kälvesten, E., and Stemme, G. (1996) “Small Silicon Pressure Transducers for Space-Time Correlation Measurements in a Flat Plate Boundary Layer,” J. Fluids Eng. 118, pp. 457–463.

    Google Scholar 

  • Lumley, J.L. (1991) “Control of the Wall Region of a Turbulent Boundary Layer,” in Turbulence: Structure and Control, ed. J.M. McMichael, pp. 61–62, 1–3 April, Ohio State University, Columbus, Ohio.

    Google Scholar 

  • Lumley, J.L. (1996) “Control of Turbulence,” AIAA Paper No. 96-0001, Washington, D.C.

    Google Scholar 

  • Lüscher, E., and Hübler, A. (1989) “Resonant Stimulation of Complex Systems,” Helv. Phys. Acta 62, pp. 544–551.

    Google Scholar 

  • McMichael, J.M. (1996) “Progress and Prospects for Active Flow Control Using Microfabricated Electromechanical Systems (MEMS),” AIAA Paper No. 96-0306, Washington, D.C.

    Google Scholar 

  • Mehregany, M., DeAnna, R.G., and Reshotko, E. (1996) “Microelectromechanical Systems for Aerodynamics Applications,” AIAA Paper No. 96-0421, Washington, D.C.

    Google Scholar 

  • Moin, P., and Bewley, T. (1994) “Feedback Control of Turbulence,” Appl. Mech. Rev. 47, no. 6, part 2, pp. S3–S13.

    Google Scholar 

  • Nosenchuck, D.M., and Lynch, M.K. (1985) “The Control of Low-Speed Streak Bursting in Turbulent Spots,” AIAA Paper No. 85-0535, New York.

    Google Scholar 

  • Ott, E., Grebogi, C., and Yorke, J.A. (1990a) “Controlling Chaos,” Phys. Rev. Lett. 64, pp. 1196–1199.

    Article  MATH  MathSciNet  Google Scholar 

  • Ott, E., Grebogi, C., and Yorke, J.A. (1990b) “Controlling Chaotic Dynamical Systems,” in Chaos: Soviet-American Perspectives on Nonlinear Science, ed. D.K. Campbell, pp. 153–172, American Institute of Physics, New York.

    Google Scholar 

  • Perrier, P. (1998) “Multiscale Active Flow Control,” in Flow Control: Fundamentals and Practices, eds. M. Gad-el-Hak, A. Pollard and J.-P. Bonnet, pp. 275–334, Springer-Verlag, Berlin.

    Google Scholar 

  • Petersen, I.R., and Savkin, A.V. (1999) Robust Kalman Filtering for Signals and Systems with Large Uncertainties, Birkhäuser, Boston, Massachusetts.

    Google Scholar 

  • Pomeau, Y., and Manneville, P. (1980) “Intermittent Transition to Turbulence in Dissipative Dynamical Systems,” Commun. Math. Phys. 74, pp. 189–197.

    Article  MathSciNet  Google Scholar 

  • Pretsch, J. (1942) “Umschlagbeginn und Absaugung,” Jahrb. Dtsch. Luftfahrtforschung 1, pp. 54–71.

    MathSciNet  Google Scholar 

  • Qin, F., Wolf, E.E., and Chang, H.-C. (1994) “Controlling Spatiotemporal Patterns on a Catalytic Wafer,” Phys. Rev. Lett. 72, pp. 1459–1462.

    Article  Google Scholar 

  • Reynolds, W.C. (1993) “Sensors, Actuators, and Strategies for Turbulent Shear-Flow Control,” invited oral presentation at AIAA Third Flow Control Conference, 6–9 July, Orlando, Florida.

    Google Scholar 

  • Robinson, S.K. (1991) “Coherent Motions in the Turbulent Boundary Layer,” Annu. Rev. Fluid. Mech. 23, pp. 601–639.

    Article  Google Scholar 

  • Romeiras, F.J., Grebogi, C., Ott, E., and Dayawansa, W.P. (1992) “Controlling Chaotic Dynamical Systems,” Physica D 58, pp. 165–192.

    Article  MathSciNet  Google Scholar 

  • Shinbrot, T. (1993) “Chaos: Unpredictable Yet Controllable?” Nonlinear Science Today 3, pp. 1–8.

    Article  MATH  MathSciNet  Google Scholar 

  • Shinbrot, T. (1995) “Progress in the Control of Chaos,” Adv. Physics 44, pp. 73–111.

    Article  Google Scholar 

  • Shinbrot, T. (1998) “Chaos, Coherence and Control,” in Flow Control: Fundamentals and Practices, eds. M. Gad-el-Hak, A. Pollard and J.-P. Bonnet, pp. 501–527, Springer-Verlag, Berlin.

    Google Scholar 

  • Shinbrot, T., and Ottino, J.M. (1993a) “Geometric Method to Create Coherent Structures in Chaotic Flows,” Phys. Rev. Lett. 71, pp. 843–846.

    Article  Google Scholar 

  • Shinbrot, T., and Ottino, J.M. (1993b) “Using Horseshoes to Create Coherent Structures in Chaotic Fluid Flows,” Bul. Am. Phys. Soc. 38, p. 2194.

    Google Scholar 

  • Shinbrot, T., Bresler, L., and Ottino, J.M. (1998) “Manipulation of Isolated Structures in Experimental Chaotic Fluid Flows,” Exp. Thermal & Fluid Sci. 16, pp. 76–83.

    Article  Google Scholar 

  • Shinbrot, T., Ditto, W., Grebogi, C., Ott, E., Spano, M., and Yorke, J.A. (1992a) “Using the Sensitive Dependence of Chaos (the “Butterfly Effect”) to Direct Trajectories in an Experimental Chaotic System,” Phys. Rev. Lett. 68, pp. 2863–2866.

    Article  MATH  MathSciNet  Google Scholar 

  • Shinbrot, T., Grebogi, C., Ott, E., and Yorke, J.A. (1992b) “Using Chaos to Target Stationary States of Flows,” Phys. Lett. A 169, pp. 349–354.

    Article  MathSciNet  Google Scholar 

  • Shinbrot, T., Grebogi, C., Ott, E., and Yorke, J.A. (1993) “Using Small Perturbations to Control Chaos,” Nature 363, pp. 411–417.

    Article  Google Scholar 

  • Shinbrot, T., Ott, E., Grebogi, C., and Yorke, J.A. (1990) “Using Chaos to Direct Trajectories to Targets,” Phys. Rev. Lett. 65, pp. 3215–3218.

    Article  Google Scholar 

  • Shinbrot, T., Ott, E., Grebogi, C., and Yorke, J.A. (1992c) “Using Chaos to Direct Orbits to Targets in Systems Describable by a One-Dimensional Map,” Phys. Rev. A 45, pp. 4165–4168.

    Article  MathSciNet  Google Scholar 

  • Singer, J., Wang, Y.-Z., and Bau, H.H. (1991) “Controlling a Chaotic System,” Phys. Rev. Lett. 66, pp. 1123–1125.

    Article  Google Scholar 

  • Sirovich, L., and Deane, A.E. (1991) “A Computational Study of Rayleigh-Bénard Convection. Part 2. Dimension Considerations,” J. Fluid Mech. 222, pp. 251–265.

    Article  MATH  MathSciNet  Google Scholar 

  • Sritharan, S.S., editor (1998) Optimal Control of Viscous Flow, SIAM, Philadelphia, Pennsylvania.

    MATH  Google Scholar 

  • Swearingen, J.D., and Blackwelder, R.F. (1984) “Instantaneous Streamwise Velocity Gradients in the Wall Region,” Bul. Am. Phys. Soc. 29, p. 1528.

    Google Scholar 

  • Tang, J., and Bau, H.H. (1993a) “Stabilization of the No-Motion State in Rayleigh-Bénard Convection through the Use of Feedback Control,” Phys. Rev. Lett. 70, pp. 1795–1798.

    Article  Google Scholar 

  • Tang, J., and Bau, H.H. (1993b) “Feedback Control Stabilization of the No-Motion State of a Fluid Confined in a Horizontal Porous Layer Heated from Below,” J. Fluid Mech. 257, pp. 485–505.

    Article  MATH  Google Scholar 

  • Viswanath, P.R. (1995) “Flow Management Techniques for Base and Afterbody Drag Reduction,” Prog. Aero. Sci. 32, pp. 79–129.

    Article  Google Scholar 

  • Wadsworth, D.C., Muntz, E.P., Blackwelder, R.F., and Shiflett, G.R. (1993) “Transient Energy Release Pressure Driven Microactuators for Control of Wall-Bounded Turbulent Flows,” AIAA Paper No. 93-3271, AIAA, Washington, D.C.

    Google Scholar 

  • Wang, Y., Singer, J., and Bau, H.H. (1992) “Controlling Chaos in a Thermal Convection Loop,” J. Fluid Mech. 237, pp. 479–498.

    Article  MathSciNet  Google Scholar 

  • Wilkinson, S.P. (1988) “Direct Drag Measurements on Thin-Element Riblets with Suction and Blowing,” AIAA Paper No. 88-3670-CP, Washington, D.C.

    Google Scholar 

  • Wilkinson, S.P. (1990) “Interactive Wall Turbulence Control,” in Viscous Drag Reduction in Boundary Layers, eds. D.M. Bushnell and J.N. Hefner, pp. 479–509, AIAA, Washington, D.C.

    Google Scholar 

  • Wilkinson, S.P., and Balasubramanian, R. (1985) “Turbulent Burst Control through Phase-Locked Surface Depressions,” AIAA Paper No. 85-0536, New York.

    Google Scholar 

  • Wilkinson, S.P., and Lazos, B.S. (1987) “Direct Drag and Hot-Wire Measurements on Thin-Element Riblet Arrays,” in Turbulence Management and Relaminarization, eds. H.W. Liepmann and R. Narasimha, pp. 121–131, Springer-Verlag, New York.

    Google Scholar 

  • Wilkinson, S.P., Anders, J.B., Lazos, B.S., and Bushnell, D.M. (1988) “Turbulent Drag Reduction Research at NASA Langley: Progress and Plans,” Int. J. Heat and Fluid Flow 9, pp. 266–277.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gad-el-Hak, M. (2007). The Taming of the Shrew: Why Is It so Difficult to Control Turbulence?. In: King, R. (eds) Active Flow Control. Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), vol 95. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71439-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71439-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71438-5

  • Online ISBN: 978-3-540-71439-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics