Skip to main content

Stereoscopic 3-D Acquisition, Processing, and Display for Telerobotic Applications

  • Chapter
Advances in Telerobotics

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 31))

Summary

We present various solutions developed through our research to problems arising in the stereoscopic 3-D visualisation process for telerobotics applications. We show that real-time of processing video imagery is required to rectify geometric distortion that can negatively impact the quality of depth perception; that rectification can be achieved efficiently using both specialised hardware and commodity hardware such as graphic card GPUs; that the solution to the computationally intensive problem of real-time computational depth estimation can be speeded up using commodity graphics card MPEG encoders; and that the problem itself can be simplified through a novel scene illumination and image acquisition strategy. Finally, we show how a display device incorporating an adaptive optics element uses computed depth to display the 3-D scene with appropriate optical distance—thus avoiding a well-known cause of visual discomfort in stereoscopic 3-D visualisation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.E.L. Grimson, G.J. Ettinger, T. Kapur, M.E. Leventon, W.M. Wells III, and R. Kikinis. Utilizing segmented MRI data in image-guided surgery. IJPRAI, 1996.

    Google Scholar 

  2. A. State, K. Keller, M. Rosenthal, H. Yang, J. Ackerman, and H. Fuchs. Stereo imagery from the UNC augmented reality system for breast biopsy guidance. Medicine Meets Virtual Reality (MMVR), 2003.

    Google Scholar 

  3. M. J. Mack. Minimally invasive and robotic surgery. In JAMA, volume 285, pages 568–573, 2001.

    Article  Google Scholar 

  4. D. Stoyanov, A. Darzi, and G.Z. Yang. Dense 3-d depth recovery for soft tissue deformation during robotically assisted laparoscopic surgery. In MICCAI, pages 41–48, 2004.

    Google Scholar 

  5. I.P. Howard and B.J. Rogers. Seeing in Depth, volume 2, Depth Perception. I. Porteous, 2002.

    Google Scholar 

  6. U.D.A. MĂ¼ller-Richter et al. Possibilities and limitations of current stereoendoscopy. Surgical Endoscopy, (18):942–947, 2004.

    Article  Google Scholar 

  7. Y. Munz et al. The benefits of stereoscopic vision in robotic-assisted performance on bench models. Surgical Endoscopy, (18):611–616, 2004.

    Article  Google Scholar 

  8. O. Faugeras. Three dimensional computer vision: A Geometric Viewpoint. MIT Press, 1993.

    Google Scholar 

  9. R. Yang, M. Pollefeys, and S. Li. Improved real-time stereo on commodity graphics hardware. In CVPR workshop on Real Time 3D Sensors and Their Use, 2004.

    Google Scholar 

  10. M. Brown, D. Burschka, and G. Hager. Advances in computational stereo. PAMI, 25(8):993–1008, 2003.

    Google Scholar 

  11. K. Konolige. Small vision systems: Hardware and implementation. In Proc. Eighth Int’l Symp. Robotics Research, 1997.

    Google Scholar 

  12. L. Falkenhagen. Hierarchical block-based disparity estimation considering neighbourhood constraints. In International workshop on SNHC and 3D Imaging, September 5–9 1997.

    Google Scholar 

  13. J. Mulligan and K. Daniilidis. Predicting disparity windows for real-time stereo. In ECCV (1), pages 220–235, 2000.

    Article  Google Scholar 

  14. R. Yang, G. Welch, and G Bishop. Real time consensus based scene reconstruction using commodity graphics hardware. In Proceedings of Pacific Graphics 2002, pages 225–234, October 2004.

    Google Scholar 

  15. C. Zach, A. Klaus, and K Karner. Accurate dense stereo reconstruction using graphics hardware. In Eurographics 2003, pages 227–234, 2003.

    Google Scholar 

  16. T. Kanada and M. Okutomi. A stereo matching algorithm with an adaptive window: Theory and experiment. PAMI, 16, 1994.

    Google Scholar 

  17. A. Fusiello, V. Roberto, and E. Trucco. Efficient stereo with multiple windowing. In Proc. Computer Vision and Pattern Recognition, pages 858–863, 1997.

    Google Scholar 

  18. A. Bobick and S. Intille. Large occlusion stereo. International Journal of Computer Vision, 33(3):181–200, 1999.

    Article  Google Scholar 

  19. J. Lotti and G. Giraudon. Correlation algorithm with adaptive window for aerial image in stereo vision. In Proc. SPIE Image and Signal Processing for Remote Sensing, 2315, 1994.

    Google Scholar 

  20. H. Hirschmuller, P. Innocent, and J. Garibaldi. Real-time correlation-based stereo vision with reduced border errors. Int’l J. Computer Vision, 47:229–246, 2002.

    Article  Google Scholar 

  21. O. Veksler. Stereo correspondence with compact windows via minimum ratio cycle. PAMI, 24:1654–1660, 2002.

    Google Scholar 

  22. R. Raskar, K. Tan, R. Feris, J. Yu, and M. Turk. Non-photorealistic camera: Depth edge detection and stylized rendering using multi-flash imaging. In Proc. ACM SIGGRAPH, 2004.

    Google Scholar 

  23. R. Feris, R. Raskar, L. Chen, K.H. Tan, and M. Turk. Discontinuity preserving stereo with small baseline multi-flash illumination. In Proceedings of the International Conference on Computer Vision, Beijing, China, October 15–21 2005. IEEE.

    Google Scholar 

  24. J.P. Wann, S. Rushton, and M. Monn-Williams. Natural problems for stereoscopic depth perception in virtual environments. Vision Research, 35(19):2731–2736, 1995.

    Article  Google Scholar 

  25. K. Akeley, S.J. Watt, A.R. Girshick, and Martin S. Banks. Achieving near-correct focus cues using multiple image planes. In SIGGRAPH Conference. ACM, 2004.

    Google Scholar 

  26. G. Vdovin, P.M. Sarro, and S. Middelhoek. Technology and applications of micro-machined silicon adaptive mirrors. Optical Engineering, 36:5509–5513, 1997.

    Article  Google Scholar 

  27. F. Shevlin. A fixed-viewpoint volumetric stereoscopic 3-D display using adaptive optics. In Stereoscopic displays and virtual reality systems XII. SPIE, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shevlin, F., McCullagh, B., Eadie, D., Navas-Herreros, M., Rabaud, C. (2007). Stereoscopic 3-D Acquisition, Processing, and Display for Telerobotic Applications. In: Ferre, M., Buss, M., Aracil, R., Melchiorri, C., Balaguer, C. (eds) Advances in Telerobotics. Springer Tracts in Advanced Robotics, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71364-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71364-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71363-0

  • Online ISBN: 978-3-540-71364-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics