Stereoscopic 3-D Acquisition, Processing, and Display for Telerobotic Applications

  • Fergal Shevlin
  • Barry McCullagh
  • David Eadie
  • Manuel Navas-Herreros
  • Christophe Rabaud
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 31)


We present various solutions developed through our research to problems arising in the stereoscopic 3-D visualisation process for telerobotics applications. We show that real-time of processing video imagery is required to rectify geometric distortion that can negatively impact the quality of depth perception; that rectification can be achieved efficiently using both specialised hardware and commodity hardware such as graphic card GPUs; that the solution to the computationally intensive problem of real-time computational depth estimation can be speeded up using commodity graphics card MPEG encoders; and that the problem itself can be simplified through a novel scene illumination and image acquisition strategy. Finally, we show how a display device incorporating an adaptive optics element uses computed depth to display the 3-D scene with appropriate optical distance—thus avoiding a well-known cause of visual discomfort in stereoscopic 3-D visualisation.


Motion Vector Search Range Adaptive Optic System Depth Discontinuity Optical Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.E.L. Grimson, G.J. Ettinger, T. Kapur, M.E. Leventon, W.M. Wells III, and R. Kikinis. Utilizing segmented MRI data in image-guided surgery. IJPRAI, 1996.Google Scholar
  2. 2.
    A. State, K. Keller, M. Rosenthal, H. Yang, J. Ackerman, and H. Fuchs. Stereo imagery from the UNC augmented reality system for breast biopsy guidance. Medicine Meets Virtual Reality (MMVR), 2003.Google Scholar
  3. 3.
    M. J. Mack. Minimally invasive and robotic surgery. In JAMA, volume 285, pages 568–573, 2001.CrossRefGoogle Scholar
  4. 4.
    D. Stoyanov, A. Darzi, and G.Z. Yang. Dense 3-d depth recovery for soft tissue deformation during robotically assisted laparoscopic surgery. In MICCAI, pages 41–48, 2004.Google Scholar
  5. 5.
    I.P. Howard and B.J. Rogers. Seeing in Depth, volume 2, Depth Perception. I. Porteous, 2002.Google Scholar
  6. 6.
    U.D.A. Müller-Richter et al. Possibilities and limitations of current stereoendoscopy. Surgical Endoscopy, (18):942–947, 2004.CrossRefGoogle Scholar
  7. 7.
    Y. Munz et al. The benefits of stereoscopic vision in robotic-assisted performance on bench models. Surgical Endoscopy, (18):611–616, 2004.CrossRefGoogle Scholar
  8. 8.
    O. Faugeras. Three dimensional computer vision: A Geometric Viewpoint. MIT Press, 1993.Google Scholar
  9. 9.
    R. Yang, M. Pollefeys, and S. Li. Improved real-time stereo on commodity graphics hardware. In CVPR workshop on Real Time 3D Sensors and Their Use, 2004.Google Scholar
  10. 10.
    M. Brown, D. Burschka, and G. Hager. Advances in computational stereo. PAMI, 25(8):993–1008, 2003.Google Scholar
  11. 11.
    K. Konolige. Small vision systems: Hardware and implementation. In Proc. Eighth Int’l Symp. Robotics Research, 1997.Google Scholar
  12. 12.
    L. Falkenhagen. Hierarchical block-based disparity estimation considering neighbourhood constraints. In International workshop on SNHC and 3D Imaging, September 5–9 1997.Google Scholar
  13. 13.
    J. Mulligan and K. Daniilidis. Predicting disparity windows for real-time stereo. In ECCV (1), pages 220–235, 2000.CrossRefGoogle Scholar
  14. 14.
    R. Yang, G. Welch, and G Bishop. Real time consensus based scene reconstruction using commodity graphics hardware. In Proceedings of Pacific Graphics 2002, pages 225–234, October 2004.Google Scholar
  15. 15.
    C. Zach, A. Klaus, and K Karner. Accurate dense stereo reconstruction using graphics hardware. In Eurographics 2003, pages 227–234, 2003.Google Scholar
  16. 16.
    T. Kanada and M. Okutomi. A stereo matching algorithm with an adaptive window: Theory and experiment. PAMI, 16, 1994.Google Scholar
  17. 17.
    A. Fusiello, V. Roberto, and E. Trucco. Efficient stereo with multiple windowing. In Proc. Computer Vision and Pattern Recognition, pages 858–863, 1997.Google Scholar
  18. 18.
    A. Bobick and S. Intille. Large occlusion stereo. International Journal of Computer Vision, 33(3):181–200, 1999.CrossRefGoogle Scholar
  19. 19.
    J. Lotti and G. Giraudon. Correlation algorithm with adaptive window for aerial image in stereo vision. In Proc. SPIE Image and Signal Processing for Remote Sensing, 2315, 1994.Google Scholar
  20. 20.
    H. Hirschmuller, P. Innocent, and J. Garibaldi. Real-time correlation-based stereo vision with reduced border errors. Int’l J. Computer Vision, 47:229–246, 2002.CrossRefGoogle Scholar
  21. 21.
    O. Veksler. Stereo correspondence with compact windows via minimum ratio cycle. PAMI, 24:1654–1660, 2002.Google Scholar
  22. 22.
    R. Raskar, K. Tan, R. Feris, J. Yu, and M. Turk. Non-photorealistic camera: Depth edge detection and stylized rendering using multi-flash imaging. In Proc. ACM SIGGRAPH, 2004.Google Scholar
  23. 23.
    R. Feris, R. Raskar, L. Chen, K.H. Tan, and M. Turk. Discontinuity preserving stereo with small baseline multi-flash illumination. In Proceedings of the International Conference on Computer Vision, Beijing, China, October 15–21 2005. IEEE.Google Scholar
  24. 24.
    J.P. Wann, S. Rushton, and M. Monn-Williams. Natural problems for stereoscopic depth perception in virtual environments. Vision Research, 35(19):2731–2736, 1995.CrossRefGoogle Scholar
  25. 25.
    K. Akeley, S.J. Watt, A.R. Girshick, and Martin S. Banks. Achieving near-correct focus cues using multiple image planes. In SIGGRAPH Conference. ACM, 2004.Google Scholar
  26. 26.
    G. Vdovin, P.M. Sarro, and S. Middelhoek. Technology and applications of micro-machined silicon adaptive mirrors. Optical Engineering, 36:5509–5513, 1997.CrossRefGoogle Scholar
  27. 27.
    F. Shevlin. A fixed-viewpoint volumetric stereoscopic 3-D display using adaptive optics. In Stereoscopic displays and virtual reality systems XII. SPIE, 2005.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Fergal Shevlin
    • 1
    • 2
  • Barry McCullagh
    • 2
  • David Eadie
    • 2
  • Manuel Navas-Herreros
    • 1
  • Christophe Rabaud
    • 1
  1. 1.Dyoptyka Ltd.Dublin 2Ireland
  2. 2.Dept. of Computer ScienceTrinity CollegeDublin 2Ireland

Personalised recommendations