Advertisement

Internet-Based Tele-Laboratory: Remote Experiments Using the SNRP Distributed Network Architecture

  • Raúl Marín
  • Raúl Wirz
  • Pedro J. Sanz
  • Josep Fernández
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 31)

Summary

This chapter describes the way students at the UJI University (Jaume I University of Castellon) are able to design remote visual servoing experiments from any computer connected to the Internet. These experiments are able to control a set of real robotic devices such as manipulators, cameras, and sensors. It means the experiments are finally executed on real robots instead of 3D simulations.

In fact, the experiments presented in this chapter focus on the on-hand visual servoing problem, which has been possible thanks to the images obtained from a camera mounted on the gripper of an educational robot.

Moreover, the Distributed Network Architecture is presented, which permits any external algorithm to have access to the state and services of several network robots (e.g. robots control, network cameras, object recognition, etc) [17] [16]. We call this architecture SNRP (Simple Network Robot Protocol), due to the fact that commanding a robot via Internet follows a very simple Web Service protocol.

Simplicity is maybe the most important challenge of a network robotics architecture, due to the fact that it must be possible for a very broad range of devices to be part of it. In fact, thanks to this simplicity we were able to implement a prototype of SNRP Network Camera using an FPGA.

The last part of the article explains how the system can execute remote experiments that use several SNRP robots in a concurrent and synchronized manner. As an example two educational manipulators and a mobile robot are used to simulate an industrial task.

Keywords

Distributed Systems Internet Network Robot Multirobot Programming Remote Visual Servoing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Marín, P.J. Sanz, and A.P. del Pobil. The UJI Online Robot: An Education and Training Experience. Autonomous Robots, vol 15, Number 3, 2003.Google Scholar
  2. 2.
    R. Marín, and P. Sanz. Grasping Determination Experiments within the UJI Robotics Telelab. Journal of Robotic Systems, Internet and Online Robots for Telemanipulation Special Issue (Part 2), vol 22, Number 4, 2005.Google Scholar
  3. 3.
    B. K. Kim et al. Web Services Based Robot Control Platform for Ubiquitous Functions. In Proc. of the IEEE Int. Conf. On Robotics and Automation (ICRA). Barcelona, Spain, 2005.Google Scholar
  4. 4.
    D. Lee and M. W. Spong. Bilateral Teleoperation of Multiple Cooperative Robots over Delayed Communication Networks: Theory. In Proc. of the IEEE Int. Conf. On Robotics and Automation (ICRA). Barcelona, Spain, 2005.Google Scholar
  5. 5.
    Jesus Manuel Gomez de Gabriel, Anibal Ollero Baturone, and Alfonso Jose Garcia Cerezo. Teleoperacion y telerrobotica. Pearson Education, cop. Madrid, 2006.Google Scholar
  6. 6.
    J.M. Azorin, O. Reinoso, R. Aracil, and M. Ferre. Generalized control method by state convergence for teleoperation systems with time delay. AUTOMATICA 40(9): 1575–1582, SEP 2004.zbMATHCrossRefGoogle Scholar
  7. 7.
    N. Turro, O. Khatib, E. Coste-Maniere. Haptically augmented teleoperation. In Proc. IEEE International Conference on Robotics and Automation (ICRA), 2001.Google Scholar
  8. 8.
    G. T. McKee, D. I. Baker, and P. S. Schenker. Robot Scpaces, Module Networks and Distributed Robot Architectures. In Proceedings of the IROS 2004 Workshop on Networked Robotics: issues, architectures and applications, Sendai, Japan, 2004.Google Scholar
  9. 9.
    G. T. McKee, D. I. Baker, and P. S. Schenker. Network robotics: Dynamic reconfigurable architectures. In Proceedings SPIE Intelligent Robots and Computer Vision XXII: Algorithms, Techniques and Active Vision, 2004.Google Scholar
  10. 10.
    S. Hutchinson, G.D. Hager, and P.I. Corke. A tutorial on visual servo control. IEEE Trans. on Robotics and Automation, 12(5):651–670, 1996.CrossRefGoogle Scholar
  11. 11.
    C.S. Kim, W.H. Seo, S.H. Han, and O. Khatib. Fuzzy logic control of a robot manipulator based on visual servoing. In Proc. Industrial Electronics (ISIE), 2001.Google Scholar
  12. 12.
    R. Wirz, R. Marin, and P. J. Sanz. Remote programming over multiple heterogeneous robots: a case study on distributed multirobot architecture. Industrial Robot: An International Journal. Vol33 Issue 6, 2006.Google Scholar
  13. 13.
    R. Wirz, R. Marín, and E. S. Quintana-Orti. Distributed System for Remote Programming of Multiple Network Robots: System Performance & Parallization Issues. In CEDI 2005 Ist Spanish Conference on Computer Science CEDI 2005, Workshop on Parallelization (JP 2005), Granada, 2005.Google Scholar
  14. 14.
    P. X. Liu, M. Q. H. Meng, and S. X. Yang. Data Communications for Internet Robots. Autonomous Robots, vol 15, 2003.Google Scholar
  15. 15.
    P. X. Liu, M. Q. H. Meng, P. R. Liu, S. X. Yang. An End-to-End Transmission Architecture for the Remote Control of Robots Over IP Networks. IEEE Transactions on Mechatronics, vol 10, Number 5, 2005.Google Scholar
  16. 16.
    R. Marin and P. J. Sanz. Grasping determination experiments within the UJI robotics telelab. J. Robot. Syst., vol 22, Number 4, 203–216, 2005.CrossRefGoogle Scholar
  17. 17.
    R. Marin, P. J. Sanz, and A. P. Del Pobil. The UJI Online Robot: An Education and Training Experience. Auton. Robots, vol 15, Number 3, 283–297, 2003.CrossRefGoogle Scholar
  18. 18.
    P. X. Liu, M. Q. H. Meng, P. R. Liu, and S. X. Yang. An end-to-end transmission architecture for the remote control of robots over IP networks. IEEE/ASME Transactions on Mechatronics, vol 10, Number 5, 560–570, 2005.CrossRefGoogle Scholar
  19. 19.
    P. X. Liu, M. Q. H. Meng, and S. X. Yang. Data Communications for Internet Robots. Auton. Robots, vol 15, Number 3, pages 213–223, 2003.CrossRefGoogle Scholar
  20. 20.
    C. S. Kim, W. H. Seo, S. H. Han, and O. Khatib. Fuzzy logic control of a robot manipulator based on visual servoing. In Proceedings. ISIE 2001. IEEE International Symposium on Industrial Electronics, pages 1597–1602, 2001.Google Scholar
  21. 21.
    R. T. Fielding and R.N. Taylor. Principled design of the modern Web architecture. In Proceedings of the 2000 International Conference on Software Engineering, pages 407–416, 2000.Google Scholar
  22. 22.
    J. M. Azorin, O. Reinoso, R. Aracil and M. Ferre. Generalized control method by state convergence for teleoperation systems with time delay. Automatica, vol. 40(9) 1575–1582, 2004.zbMATHCrossRefGoogle Scholar
  23. 23.
    D. I. Baker, G. T. McKee, and P. S. Schenker. Network robotics: dynamic reconfigurable architectures. In Proc. of SPIE. Intelligent Robots and Computer Vision XXII: Algorithms, Techniques, and Active Vision, pages 360–369, 2004.Google Scholar
  24. 24.
    G. McKee and D. Baker. Robot Spaces, Module Networks and Distributed Robot Architectures. In Networked Robotics: Issues, Architectures and Applications (IROS-2004), pages 360–369, 2004.Google Scholar
  25. 25.
    N. Turro and O. Khatib. Haptically Augmented Teleoperation. ISER’ 00: Experimental Robotics VII. Edit. Springer-Verlag, 2001.Google Scholar
  26. 26.
    J. M. Gomez de Gabriel, A. Ollero Baturone, and A. J. Garcia Cerezo. Teleoperacion y Telerrobotica. (in Spanish), Edit. Prentice-Hall, series Automatica Robotica, 2006.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Raúl Marín
    • 1
  • Raúl Wirz
    • 1
  • Pedro J. Sanz
    • 1
  • Josep Fernández
    • 2
  1. 1.Dept. d’Enginyeria i Ciéncia dels ComputadorsUniversidad Jaume ICastellonSpain
  2. 2.Automatic Control and Computer Engineering DepartmentTechnical University of Catalonia (UPC)BarcelonaSpain

Personalised recommendations