Robot Assisted Force Feedback Surgery

  • Tobias Ortmaier
  • Barbara Deml
  • Bernhard Kübler
  • Georg Passig
  • Detlef Reintsema
  • Ulrich Seibold
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 31)


Minimally invasive surgery characterizes a sophisticated operation technique in which long, slender instruments are inserted into the patient through small incisions. Though providing crucial benefits compared to open surgery (i.e. reduced tissue traumatization) it is also faced with a number of disadvantages. One of the major problems is that the surgeon cannot access the operating field directly and, therefore, can neither palpate tissue nor sense forces sufficiently. Furthermore, the dexterity of the surgeon is reduced as the instruments have to be pivoted around an invariant point.

To overcome some of the drawbacks, telepresence constitutes a promising approach. The surgical instruments can be equipped with miniaturized force/torque sensors and contact forces can be displayed to the surgeon using a suitable man-machine interface. Furthermore, instruments can be built with additional degrees of freedom at the distal end, providing full dexterity inside the patient’s body. Thanks to telepresence the surgeon regains direct access to the operating field, similar to open surgery.

In this chapter a prototypical force reflecting minimally invasive robotic surgery system based on two surgical robots is presented. The robots are equipped with a sensorized scalpel and a stereo laparoscope for visual feedback. The operator console consists of a PHANToM force feedback device and a stereoscopic display. Experimental results of a tissue dissection task revealed significant differences between manual and robot assisted surgery. At the end of the chapter some conclusions based on the experimental evaluation are drawn, showing that both, manual and robotic minimally invasive surgery have specific advantages.


Minimally Invasive Surgery Force Feedback Surgical Robot Kinesthetic Feedback Operator Console 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.R. Treat. Computer-Integrated Surgery, chapter A Surgeon’s Perspective on the Difficulties of Laparoscopic Surgery, pages 559–560. MIT Press, 1995.Google Scholar
  2. 2.
    M.A. Helmy. A comparative study between laparoscopic versus open appendicectomy in men. J Egypt Soc Parasitol, Aug. 2001.Google Scholar
  3. 3.
    S. Sauerland, R. Lefering, and EA. Neugebauer. Laparoscopic versus open surgery for suspected appendicitis. Cochrane Database Syst Rev, 2002.Google Scholar
  4. 4.
    U. Seibold and G. Hirzinger. A 6-axis force/torque sensor design for haptic feedback in minimally invasive robotic surgery. In Proceedings of the 2nd VDE World Microtechnologies Congress, Munich, Germany, October 2003.Google Scholar
  5. 5.
    T. Ortmaier and G. Hirzinger. Cartesian control issues for minimally invasive robot surgery. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems IROS 2000, Takamatsu, Japan, October 2000.Google Scholar
  6. 6.
    T. Ortmaier, H. Weiss, and G. Hirzinger. Minimally invasive robotic surgery: Foundations and perspectives. In IEEE International Conference on Robotics and Automation: Workshop on Recent Advances in Medical Robotics,, Taipei, Taiwan, September 2003.Google Scholar
  7. 7.
    T. Ortmaier. Motion Compensation in Minimally Invasive Robotic Surgery. VDI Verlag, 2003. PhD Thesis.Google Scholar
  8. 8.
    Y. Nakamura. Virtual stillness and small size robot system that occupies less space in or. In International Conference on Robotics and Automation (ICRA) 2003, Workshop Recent Advances in Medical Robotics, Taipei, Taiwan, 2003.Google Scholar
  9. 9.
    V. Falk, A. Diegeler, T. Walther, B. Vogel N. Löscher, C. Ulmann, T. Rauch, and F. W. Mohr. Endoscopic coronary artery bypass grafting on the beating heart using a computer enhanced telemanipulation system. Heart Surg Forum, 2:199–205, 1999.Google Scholar
  10. 10.
    D. H. Boehm, H. Reichenspurner, C. Detter, M. Arnold, H. Gulbins, B. Meiser, and B. Reichart. Clinical use of a computer-enhanced surgical robotic system for endoscopic coronary artery bypass grafting on the beating heart. Thorac Cardiovasc Surg, 48(4), 2000.Google Scholar
  11. 11.
    A. Tewari, A. Srivasatava, M. Menon. A prospective comparison of radical retropubic and robot-assisted prostatectomy: experience in one institution. BJU Int, 92(3):205–10, 2003.CrossRefGoogle Scholar
  12. 12.
    V. Dotzel, D. Wetzel, D. Wilhelm, A. Schneider, G. Wessels, and H. Feussner. Robotic and navigation systems: surgical practicability and benefit for the patient? Zentralbl Chir, 128(3):227–31, March 2003.CrossRefGoogle Scholar
  13. 13.
    W.D. Boyd, K.D. Stahl. Janus syndrome: a perspective on a new era of computer-enhanced robotic cardiac surgery. J Thorac Cardiovasc Surg, 126(3):625–30, September 2003.CrossRefGoogle Scholar
  14. 14.
    V. Falk, S. Jacobs, J.F. Gummert, T. Walther, and F.W. Mohr. Computer-enhanced endoscopic coronary artery bypass grafting: the davinci experience. Semin Thorac Cardiovasc Surg, 15(2):104–11, April 2003.CrossRefGoogle Scholar
  15. 15.
    R.J. Novick, S.A. Fox, B.B. Kiaii, L.W. Stitt, R. Rayman, K. Kodera, A.H. Menkis, and W.D. Boyd. Analysis of the learning curve in telerobotic, beating heart coronary artery bypass grafting: a 90 patient experience. Ann Thorac Surg, 76(3), September 2003.Google Scholar
  16. 16.
    P. Bergmann, S. Huber, H. Segl, H. Maechler, U. Reiter, G. Reiter, R. Rienmueller, P. Oberwalder, and B. Rigler. Cardiac MR in robotic heart surgery for preoperative identification of the target vessel and precise port placement — a theoretical model. Thorac Cardiovasc Surg, 51(4):204–10, August 2003.CrossRefGoogle Scholar
  17. 17.
    V. Falk, S. Jacobs, J.F. Gummert, and T. Walther. Robotic coronary artery bypass grafting (CABG) — the Leipzig experience. Surg Clin North Am, 83(6):1381–6, December 2003.CrossRefGoogle Scholar
  18. 18.
    S. Jacobs, D. Holzhey, B.B. Kiaii, J.F. Onnasch, T. Walther, F.W. Mohr, and V. Falk. Limitations for manual and telemanipulator-assisted motion tracking — implications for endoscopic beating-heart surgery. Ann Thorac Surg, 76(6):2029–35, December 2003.CrossRefGoogle Scholar
  19. 19.
    R.H. Taylor and D. Stoianovici. Medical robotics in compter-integrated surgery. IEEE Transactions on Robotics and Automation, 19(5):765–781, October 2003.CrossRefGoogle Scholar
  20. 20.
    J.M. Sackier and Y. Wang. Computer-Integrated Surgery, chapter Robotically Assisted Laparoscopic Surgery: From Concept to Development, pages 577–580. MIT Press, 1995.Google Scholar
  21. 21.
    G. Guthart and J. Salisbury. The intuitive telesurgery system: Overview and application. In Proceedings of the 2000 IEEE International Conference on Robotics and Automation, San Francisco, U.S.A., April 2000.Google Scholar
  22. 22.
    H. Düpree. Laprotek — Master Slave Systeme in der Viszeralchirurgie. In 2. Jahrestagung der Deutschen Gesellschaft für Computer-und Roboterassistierte Chirurgie (CURAC), Nürnberg, Germany, November 2003.Google Scholar
  23. 23.
    Intuitive Surgical Inc. Webpage., 2005.Google Scholar
  24. 24.
    M.C. Cavusoglu, W. Williams, F. Tendick, and S.S. Sastry. Robotics for telesurgery: Second generation Berkeley/UCSF laparoscopic telesurgical workstation and looking towards the future applications. In Proceedings of the 39th Allerton Conference on Communication, Control and Computing, Monticello, Italy, October 2001.Google Scholar
  25. 25.
    D.S. Kwon, K.Y. Woo, S.K. Song, W.S. Kim, H.S. Cho. Microsurgical telerobot system. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Control Systems, 1998.Google Scholar
  26. 26.
    T. Hu, A. Castellanos, G. Tholey, and J. Desai. Real-time haptic feedback in laparoscopic tools for use in gastro-intestinal surgery. In Medical Image Computing and Computer-Assisted Intervention — MICCAI 2002: 5th International Conference, Proceedings, pages 66–74, Tokyo, Japan, September 2002.Google Scholar
  27. 27.
    M. Tavakoli, R.V. Patel, and M. Moallem. A force reflective master-slave system for minimally invasive surgery. In Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems IROS 2003, Las Vegas, USA, October 2003.Google Scholar
  28. 28.
    N. Zemiti, T. Ortmaier, M. Vitrani, and G. Morel. A force controlled laparoscopic surgical robot without distal force sensing. In Proc. of the ISER 2004; 9th International Symposium on Experimental Robotics, Singapore, June 2004.Google Scholar
  29. 29.
    H. Mayer, I. Nagy, A. Knoll, E. Schirmbeck, R. Bauernschmitt. Robotic system to evaluate force feedback in minimally invasive computer aided surgery. In Proc. of the 2004 ASME Design Engineering Technical Conferences, Salt Lake City, Utah, USA, 2004.Google Scholar
  30. 30.
    E.U. Schirmbeck, H. Mayer, I. Nagy, A. Knoll, R. Lange, and R. Bauernschmitt. Evaluation of force feedback in minimally invasive robotic surgery. In Fachtagung “Biomedizinische Technik”, Technische Universität Ilmenau, September 2004.Google Scholar
  31. 31.
    E. Burdet, R. Gassert, F. Mani, F. Wang, C. Teo, and H. Bleuler. Design of a haptic forceps for microsurgery training. In Proceedings of the 4th International Conference EuroHaptics 2004, Munich, Germany, June 2004.Google Scholar
  32. 32.
    ForceDimension. Webpage., June 2004.Google Scholar
  33. 33.
    G.-Q. Wei, K. Arbter, and G. Hirzinger. Real-time visual servoing for laparoscopic surgery. IEEE Engineering in Medicine and Biology, 16(1), January/February 1997.Google Scholar
  34. 34.
    K. Omote, H. Feussner, A. Ungeheuer, K. Arbter, G.-Q. Wei, J. R. Siewert, and G. Hirzinger. Self-guided robotic camera control for laparoscopic surgery compared with human camera control. The American Journal of Surgery, 117:321–324, April 1999.CrossRefGoogle Scholar
  35. 35.
    M. Sorli and S. Pastorelli. Six-axis reticulated structure force/torque sensor with adaptable performances. Mechatronics, 5(6):585–601, 1995.CrossRefGoogle Scholar
  36. 36.
    B. Kübler, U. Seibold, and G. Hirzinger. Development of actuated and sensor integrated forceps for minimally invasive robotic surgery. International Journal of Medical Robotics and Computer Assisted Surgery, 1(3):96–107, 2005.CrossRefGoogle Scholar
  37. 37.
    U. Seibold, B. Kuebler, H. Weiss, T. Ortmaier, and G. Hirzinger. Sensorized and actuated instruments for minimally invasive robotic surgery. In Proceedings of the 4th International Conference EuroHaptics 2004, Munich, Germany, June 2004.Google Scholar
  38. 38.
    T. Ortmaier and G. Hirzinger. Cartesian control of robots with working-position dependent dynamics. In Proceedings of the 6th International IFAC Symposium on Robot Control — Syroco 2000, Vienna, Austria, September 2000.Google Scholar
  39. 39.
    C. Natale, R. Koeppe, and G. Hirzinger. An automatic procedure for force controller design. In IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Atlanta, Georgia, USA, sep 1999.Google Scholar
  40. 40.
    C. Preusche, T. Ortmaier, and G. Hirzinger. Teleoperation Concepts in Minimally Invasive Surgery. In Proceedings of 1. IFAC Conference on Telematics Application in Automation and Robotics, Weingarten, July 2001. VDI/VDE-GMA.Google Scholar
  41. 41.
    Object Management Group (OMG). The Common Object Request Broker: Architecture and Specification, 1998. OMG Document 98-02-33.Google Scholar
  42. 42.
    D. Reintsema, J. Vogel, G. Hirzinger, and T. Unterschütz. CORBA — Ein standardisierter Software-Bus für verteilte Anwendungen in der Robotik. In Industrielle Automation und Internet/Intranet-Technologie, VDI-Berichte 1515, pages 181–192. VDI Verlag, 1999.Google Scholar
  43. 43.
    C. E. H. Scott-Conner. The SAGES manual: fundamentals of laparoscopy and GI endoscopy. Springer, New York, 1999.Google Scholar
  44. 44.
    C. R. Wagner, N. Stylopoulos, and R. Howe. The role of force feedback in surgery: Analysis of blunt dissection. In 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pages 73–79, 2002.Google Scholar
  45. 45.
    W. J. Diamond. Practical Experiment Designs: for Engineers and Scientists. John Wiley, New York, 2001.Google Scholar
  46. 46.
    J. Landis and G. Koch. The measurement of observer agreement for categorical data. Biometrics, 33:159–174, 1977.zbMATHCrossRefGoogle Scholar
  47. 47.
    L. K. Edwards. Applied analysis of variance in behavioral science. Dekker, 1993.Google Scholar
  48. 48.
    T. Ortmaier, H. Weiss, U. Hagn, M. Grebenstein, M. Nickl, A. Albu-Schäffer, C. Ott, S. Jörg, R. Konietschke, L. Le-Tien, and G. Hirzinger. A Hands-On-Robot for Accurate Placement of Pedicle Screws. In To be presented at: IEEE International Conference on Robotics and Automation (ICRA), Orlando, Florida, USA, May 2006.Google Scholar
  49. 49.
    T. Ortmaier, M. Groeger, D. H. Boehm, V. Falk, G. Hirzinger. Motion estimation in beating heart surgery. IEEE Transactions on Biomedical Engineering, 52(10):1729–1740, 2005.CrossRefGoogle Scholar
  50. 50.
    Y. Nakamura, K. Kishi, and H. Kawakami. Heartbeat synchronization for robotic cardiac surgery. In IEEE International Conference on Robotics and Automation (ICRA), pages 2014–2019, Seoul, Korea, May 2001.Google Scholar
  51. 51.
    R. Ginhoux, J.A. Gangloff, M.F. de Mathelin, L. Soler, M.M. Arenas Sanchez, and J. Marescaux. Beating heart tracking in robotic surgery using 500 Hz visual servoing, model predictive control and an adaptive observer. In IEEE International Conference on Robotics and Automation (ICRA), pages 274–279, New Orleans, USA, April 2004.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Tobias Ortmaier
    • 1
    • 3
  • Barbara Deml
    • 2
  • Bernhard Kübler
    • 1
  • Georg Passig
    • 1
  • Detlef Reintsema
    • 1
  • Ulrich Seibold
    • 1
  1. 1.Institute of Robotics and Mechatronics OberpfaffenhofenGerman Aerospace Center (DLR)WesslingGermany
  2. 2.Human Factors InstituteUniversity of the Armed Forces Munich (UniBW)NeubibergGermany
  3. 3.KUKA Roboter GmbHAugsburgGermany

Personalised recommendations