Skip to main content

Robot Assisted Force Feedback Surgery

  • Chapter
Advances in Telerobotics

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 31))

Summary

Minimally invasive surgery characterizes a sophisticated operation technique in which long, slender instruments are inserted into the patient through small incisions. Though providing crucial benefits compared to open surgery (i.e. reduced tissue traumatization) it is also faced with a number of disadvantages. One of the major problems is that the surgeon cannot access the operating field directly and, therefore, can neither palpate tissue nor sense forces sufficiently. Furthermore, the dexterity of the surgeon is reduced as the instruments have to be pivoted around an invariant point.

To overcome some of the drawbacks, telepresence constitutes a promising approach. The surgical instruments can be equipped with miniaturized force/torque sensors and contact forces can be displayed to the surgeon using a suitable man-machine interface. Furthermore, instruments can be built with additional degrees of freedom at the distal end, providing full dexterity inside the patient’s body. Thanks to telepresence the surgeon regains direct access to the operating field, similar to open surgery.

In this chapter a prototypical force reflecting minimally invasive robotic surgery system based on two surgical robots is presented. The robots are equipped with a sensorized scalpel and a stereo laparoscope for visual feedback. The operator console consists of a PHANToM force feedback device and a stereoscopic display. Experimental results of a tissue dissection task revealed significant differences between manual and robot assisted surgery. At the end of the chapter some conclusions based on the experimental evaluation are drawn, showing that both, manual and robotic minimally invasive surgery have specific advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.R. Treat. Computer-Integrated Surgery, chapter A Surgeon’s Perspective on the Difficulties of Laparoscopic Surgery, pages 559–560. MIT Press, 1995.

    Google Scholar 

  2. M.A. Helmy. A comparative study between laparoscopic versus open appendicectomy in men. J Egypt Soc Parasitol, Aug. 2001.

    Google Scholar 

  3. S. Sauerland, R. Lefering, and EA. Neugebauer. Laparoscopic versus open surgery for suspected appendicitis. Cochrane Database Syst Rev, 2002.

    Google Scholar 

  4. U. Seibold and G. Hirzinger. A 6-axis force/torque sensor design for haptic feedback in minimally invasive robotic surgery. In Proceedings of the 2nd VDE World Microtechnologies Congress, Munich, Germany, October 2003.

    Google Scholar 

  5. T. Ortmaier and G. Hirzinger. Cartesian control issues for minimally invasive robot surgery. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems IROS 2000, Takamatsu, Japan, October 2000.

    Google Scholar 

  6. T. Ortmaier, H. Weiss, and G. Hirzinger. Minimally invasive robotic surgery: Foundations and perspectives. In IEEE International Conference on Robotics and Automation: Workshop on Recent Advances in Medical Robotics,, Taipei, Taiwan, September 2003.

    Google Scholar 

  7. T. Ortmaier. Motion Compensation in Minimally Invasive Robotic Surgery. VDI Verlag, 2003. PhD Thesis.

    Google Scholar 

  8. Y. Nakamura. Virtual stillness and small size robot system that occupies less space in or. In International Conference on Robotics and Automation (ICRA) 2003, Workshop Recent Advances in Medical Robotics, Taipei, Taiwan, 2003.

    Google Scholar 

  9. V. Falk, A. Diegeler, T. Walther, B. Vogel N. Löscher, C. Ulmann, T. Rauch, and F. W. Mohr. Endoscopic coronary artery bypass grafting on the beating heart using a computer enhanced telemanipulation system. Heart Surg Forum, 2:199–205, 1999.

    Google Scholar 

  10. D. H. Boehm, H. Reichenspurner, C. Detter, M. Arnold, H. Gulbins, B. Meiser, and B. Reichart. Clinical use of a computer-enhanced surgical robotic system for endoscopic coronary artery bypass grafting on the beating heart. Thorac Cardiovasc Surg, 48(4), 2000.

    Google Scholar 

  11. A. Tewari, A. Srivasatava, M. Menon. A prospective comparison of radical retropubic and robot-assisted prostatectomy: experience in one institution. BJU Int, 92(3):205–10, 2003.

    Article  Google Scholar 

  12. V. Dotzel, D. Wetzel, D. Wilhelm, A. Schneider, G. Wessels, and H. Feussner. Robotic and navigation systems: surgical practicability and benefit for the patient? Zentralbl Chir, 128(3):227–31, March 2003.

    Article  Google Scholar 

  13. W.D. Boyd, K.D. Stahl. Janus syndrome: a perspective on a new era of computer-enhanced robotic cardiac surgery. J Thorac Cardiovasc Surg, 126(3):625–30, September 2003.

    Article  Google Scholar 

  14. V. Falk, S. Jacobs, J.F. Gummert, T. Walther, and F.W. Mohr. Computer-enhanced endoscopic coronary artery bypass grafting: the davinci experience. Semin Thorac Cardiovasc Surg, 15(2):104–11, April 2003.

    Article  Google Scholar 

  15. R.J. Novick, S.A. Fox, B.B. Kiaii, L.W. Stitt, R. Rayman, K. Kodera, A.H. Menkis, and W.D. Boyd. Analysis of the learning curve in telerobotic, beating heart coronary artery bypass grafting: a 90 patient experience. Ann Thorac Surg, 76(3), September 2003.

    Google Scholar 

  16. P. Bergmann, S. Huber, H. Segl, H. Maechler, U. Reiter, G. Reiter, R. Rienmueller, P. Oberwalder, and B. Rigler. Cardiac MR in robotic heart surgery for preoperative identification of the target vessel and precise port placement — a theoretical model. Thorac Cardiovasc Surg, 51(4):204–10, August 2003.

    Article  Google Scholar 

  17. V. Falk, S. Jacobs, J.F. Gummert, and T. Walther. Robotic coronary artery bypass grafting (CABG) — the Leipzig experience. Surg Clin North Am, 83(6):1381–6, December 2003.

    Article  Google Scholar 

  18. S. Jacobs, D. Holzhey, B.B. Kiaii, J.F. Onnasch, T. Walther, F.W. Mohr, and V. Falk. Limitations for manual and telemanipulator-assisted motion tracking — implications for endoscopic beating-heart surgery. Ann Thorac Surg, 76(6):2029–35, December 2003.

    Article  Google Scholar 

  19. R.H. Taylor and D. Stoianovici. Medical robotics in compter-integrated surgery. IEEE Transactions on Robotics and Automation, 19(5):765–781, October 2003.

    Article  Google Scholar 

  20. J.M. Sackier and Y. Wang. Computer-Integrated Surgery, chapter Robotically Assisted Laparoscopic Surgery: From Concept to Development, pages 577–580. MIT Press, 1995.

    Google Scholar 

  21. G. Guthart and J. Salisbury. The intuitive telesurgery system: Overview and application. In Proceedings of the 2000 IEEE International Conference on Robotics and Automation, San Francisco, U.S.A., April 2000.

    Google Scholar 

  22. H. Düpree. Laprotek — Master Slave Systeme in der Viszeralchirurgie. In 2. Jahrestagung der Deutschen Gesellschaft für Computer-und Roboterassistierte Chirurgie (CURAC), Nürnberg, Germany, November 2003.

    Google Scholar 

  23. Intuitive Surgical Inc. Webpage. http://www.intuitivesurgical.com/, 2005.

    Google Scholar 

  24. M.C. Cavusoglu, W. Williams, F. Tendick, and S.S. Sastry. Robotics for telesurgery: Second generation Berkeley/UCSF laparoscopic telesurgical workstation and looking towards the future applications. In Proceedings of the 39th Allerton Conference on Communication, Control and Computing, Monticello, Italy, October 2001.

    Google Scholar 

  25. D.S. Kwon, K.Y. Woo, S.K. Song, W.S. Kim, H.S. Cho. Microsurgical telerobot system. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Control Systems, 1998.

    Google Scholar 

  26. T. Hu, A. Castellanos, G. Tholey, and J. Desai. Real-time haptic feedback in laparoscopic tools for use in gastro-intestinal surgery. In Medical Image Computing and Computer-Assisted Intervention — MICCAI 2002: 5th International Conference, Proceedings, pages 66–74, Tokyo, Japan, September 2002.

    Google Scholar 

  27. M. Tavakoli, R.V. Patel, and M. Moallem. A force reflective master-slave system for minimally invasive surgery. In Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems IROS 2003, Las Vegas, USA, October 2003.

    Google Scholar 

  28. N. Zemiti, T. Ortmaier, M. Vitrani, and G. Morel. A force controlled laparoscopic surgical robot without distal force sensing. In Proc. of the ISER 2004; 9th International Symposium on Experimental Robotics, Singapore, June 2004.

    Google Scholar 

  29. H. Mayer, I. Nagy, A. Knoll, E. Schirmbeck, R. Bauernschmitt. Robotic system to evaluate force feedback in minimally invasive computer aided surgery. In Proc. of the 2004 ASME Design Engineering Technical Conferences, Salt Lake City, Utah, USA, 2004.

    Google Scholar 

  30. E.U. Schirmbeck, H. Mayer, I. Nagy, A. Knoll, R. Lange, and R. Bauernschmitt. Evaluation of force feedback in minimally invasive robotic surgery. In Fachtagung “Biomedizinische Technik”, Technische Universität Ilmenau, September 2004.

    Google Scholar 

  31. E. Burdet, R. Gassert, F. Mani, F. Wang, C. Teo, and H. Bleuler. Design of a haptic forceps for microsurgery training. In Proceedings of the 4th International Conference EuroHaptics 2004, Munich, Germany, June 2004.

    Google Scholar 

  32. ForceDimension. Webpage. http://www.forcedimension.com, June 2004.

    Google Scholar 

  33. G.-Q. Wei, K. Arbter, and G. Hirzinger. Real-time visual servoing for laparoscopic surgery. IEEE Engineering in Medicine and Biology, 16(1), January/February 1997.

    Google Scholar 

  34. K. Omote, H. Feussner, A. Ungeheuer, K. Arbter, G.-Q. Wei, J. R. Siewert, and G. Hirzinger. Self-guided robotic camera control for laparoscopic surgery compared with human camera control. The American Journal of Surgery, 117:321–324, April 1999.

    Article  Google Scholar 

  35. M. Sorli and S. Pastorelli. Six-axis reticulated structure force/torque sensor with adaptable performances. Mechatronics, 5(6):585–601, 1995.

    Article  Google Scholar 

  36. B. Kübler, U. Seibold, and G. Hirzinger. Development of actuated and sensor integrated forceps for minimally invasive robotic surgery. International Journal of Medical Robotics and Computer Assisted Surgery, 1(3):96–107, 2005.

    Article  Google Scholar 

  37. U. Seibold, B. Kuebler, H. Weiss, T. Ortmaier, and G. Hirzinger. Sensorized and actuated instruments for minimally invasive robotic surgery. In Proceedings of the 4th International Conference EuroHaptics 2004, Munich, Germany, June 2004.

    Google Scholar 

  38. T. Ortmaier and G. Hirzinger. Cartesian control of robots with working-position dependent dynamics. In Proceedings of the 6th International IFAC Symposium on Robot Control — Syroco 2000, Vienna, Austria, September 2000.

    Google Scholar 

  39. C. Natale, R. Koeppe, and G. Hirzinger. An automatic procedure for force controller design. In IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Atlanta, Georgia, USA, sep 1999.

    Google Scholar 

  40. C. Preusche, T. Ortmaier, and G. Hirzinger. Teleoperation Concepts in Minimally Invasive Surgery. In Proceedings of 1. IFAC Conference on Telematics Application in Automation and Robotics, Weingarten, July 2001. VDI/VDE-GMA.

    Google Scholar 

  41. Object Management Group (OMG). The Common Object Request Broker: Architecture and Specification, 1998. OMG Document 98-02-33.

    Google Scholar 

  42. D. Reintsema, J. Vogel, G. Hirzinger, and T. Unterschütz. CORBA — Ein standardisierter Software-Bus für verteilte Anwendungen in der Robotik. In Industrielle Automation und Internet/Intranet-Technologie, VDI-Berichte 1515, pages 181–192. VDI Verlag, 1999.

    Google Scholar 

  43. C. E. H. Scott-Conner. The SAGES manual: fundamentals of laparoscopy and GI endoscopy. Springer, New York, 1999.

    Google Scholar 

  44. C. R. Wagner, N. Stylopoulos, and R. Howe. The role of force feedback in surgery: Analysis of blunt dissection. In 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pages 73–79, 2002.

    Google Scholar 

  45. W. J. Diamond. Practical Experiment Designs: for Engineers and Scientists. John Wiley, New York, 2001.

    Google Scholar 

  46. J. Landis and G. Koch. The measurement of observer agreement for categorical data. Biometrics, 33:159–174, 1977.

    Article  MATH  Google Scholar 

  47. L. K. Edwards. Applied analysis of variance in behavioral science. Dekker, 1993.

    Google Scholar 

  48. T. Ortmaier, H. Weiss, U. Hagn, M. Grebenstein, M. Nickl, A. Albu-Schäffer, C. Ott, S. Jörg, R. Konietschke, L. Le-Tien, and G. Hirzinger. A Hands-On-Robot for Accurate Placement of Pedicle Screws. In To be presented at: IEEE International Conference on Robotics and Automation (ICRA), Orlando, Florida, USA, May 2006.

    Google Scholar 

  49. T. Ortmaier, M. Groeger, D. H. Boehm, V. Falk, G. Hirzinger. Motion estimation in beating heart surgery. IEEE Transactions on Biomedical Engineering, 52(10):1729–1740, 2005.

    Article  Google Scholar 

  50. Y. Nakamura, K. Kishi, and H. Kawakami. Heartbeat synchronization for robotic cardiac surgery. In IEEE International Conference on Robotics and Automation (ICRA), pages 2014–2019, Seoul, Korea, May 2001.

    Google Scholar 

  51. R. Ginhoux, J.A. Gangloff, M.F. de Mathelin, L. Soler, M.M. Arenas Sanchez, and J. Marescaux. Beating heart tracking in robotic surgery using 500 Hz visual servoing, model predictive control and an adaptive observer. In IEEE International Conference on Robotics and Automation (ICRA), pages 274–279, New Orleans, USA, April 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ortmaier, T., Deml, B., Kübler, B., Passig, G., Reintsema, D., Seibold, U. (2007). Robot Assisted Force Feedback Surgery. In: Ferre, M., Buss, M., Aracil, R., Melchiorri, C., Balaguer, C. (eds) Advances in Telerobotics. Springer Tracts in Advanced Robotics, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71364-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71364-7_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71363-0

  • Online ISBN: 978-3-540-71364-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics