Advertisement

DLR’s Advanced Telerobotic Concepts and Experiments for On-Orbit Servicing

  • Detlef Reintsema
  • Klaus Landzettel
  • Gerd Hirzinger
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 31)

Summary

Space robotics will become a key technology for the exploration of outer space and the operation and maintenance of space stations, satellites and other platforms, saving costs and relieving man from dangerous tasks. But we do not have to wait until robots are really autonomous or intelligent, since by modern teleoperation and telepresence we are able to remotely control robot systems from the ground in the sense of “prolonging man’s arm into space”. Humans, with their several hundred thousand years of evolution, will not adapt themselves to the hostile space environment, whilst robots, which have only been developed for just over 40 years, can be much more easily adapted to such an environment. As presented within this work, few pioneering telerobotic experiments like ROTEX, the first remotely controlled space robot system, ETS-VII, the first free-floating space robot experiment, or ROKVISS, Germany’s recent advanced space robot experiment on the International Space Station, have been proposed and conducted on the way towards a space robot assistant system for the usage as an artificial astronaut to perform On-Orbit Servicing (OOS) tasks.

Keywords

International Space Station Robotic Technology Space Robot Target Satellite Ground Control Station 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Hayati and S.T. Venkataraman. Design and Implementation of a Robot Control System with Traded and Shared Control Capability. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 3:1310–1315, 1989.Google Scholar
  2. 2.
    L. Conway, R. Volz, and M. Walker. Tele-Autonomous Systems: Methods and Architectures for Intermingling Autonomous and Telerobotic Technology. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2:1121–1130, 1987.Google Scholar
  3. 3.
    D. King. On-orbit servicing business; an industry vision. In Proc. of the 1st Bilateral DLR-CSA Workshop on On-Orbit Servicing of Space Infrastructure Elements via Automation & Robotics Technologies (OOS 2002) “Defining a Way Forward”, Cologne, Germany, 2002.Google Scholar
  4. 4.
    A. Ellery. Handling technology: technology of robotic in-orbit servicing. In Proc. of the 1st Bilateral DLR-CSA Workshop on On-Orbit Servicing of Space Infrastructure Elements via Automation & Robotics Technologies (OOS 2002) “Defining a Way Forward”, Cologne, Germany, 2002.Google Scholar
  5. 5.
    J.-C. Piedboeuf. On-Orbit Servicing and Beyond: A Canadian Perspective. In Proc. of the 1st Bilateral DLR-CSA Workshop on On-Orbit Servicing of Space Infrastructure Elements via Automation & Robotics Technologies (OOS 2002) “Defining a Way Forward”, Cologne, Germany, 2002.Google Scholar
  6. 6.
    J. Andary and P. Spidaliere. Development test flight of the Flight Telerobotic Servicer: design description and lessons learned. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2:1121–1130, 1993.Google Scholar
  7. 7.
    J. Artigas, C. Preusche, and G. Hirzinger. Wave Variables based Bilateral Control with a Time Delay Model for Space Robot Applications. In Robotik 2004, VDIBericht, München, Germany, 1841:101–108, 2004.Google Scholar
  8. 8.
    B. Brunner, K. Arbter, and G. Hirzinger. Task Directed Programming of Sensor Based Robots. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2:1080–1087, 1994.CrossRefGoogle Scholar
  9. 9.
    B. Brunner, K. Landzettel, B.-M. Steinmetz, and G. Hirzinger. Tele-Sensor-Programming-A task-directed programming approach for sensor-based space robots. In ICAR-The 7th International Conference on Advanced Robotics, Sant Feliu de Guixols, Catalonia (Spain), 1995.Google Scholar
  10. 10.
    B. Brunner, K. Landzettel, G. Schreiber, B.-M. Steinmetz, and G. Hirzinger. A universal Task-Level Ground Control and Programming System for Space Robot Applications-The MARCO Concept and its Application to the ETS-VII Project. In Proc. of the 5th International Symposium on Artificial Intelligence, Robotics and Automation in Space (iSAIRAS), ESTEC, Noordwijk, The Netherlands, pages 507–514, 1999.Google Scholar
  11. 11.
    G. Hirzinger, K. Landzettel, J. Heindl, and J. Dietrich. ROTEX-The First Robot in Space. In The 5th European Symposium on Space Environmental Control Systems and 24th International Conference on Environmental Systems (ICES), Friedrichshafen, Germany, 1994.Google Scholar
  12. 12.
    Ch. Fragerer and G. Hirzinger. Predicitve Telerobotic Concept for Grasping a Floating Object. In International Federation of Automatic Control, Spacecraft Automation and On-Board Autonomous Mission Control, Darmstadt, Germany, 1992.Google Scholar
  13. 13.
    G. Hirzinger, B. Brunner, J. Dietrich and J. Heindl. Sensor-Based Space Robotics-ROTEX and Its Telerobotic Features. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 9:649–663, 1993.CrossRefGoogle Scholar
  14. 14.
    G. Hirzinger. Multisensory Shared Autonomy and Tele-Sensor-Programming-Key Issuses in Space Robotics. In IAS-3 International Conference in Intelligent Autonomous Systems, Pittsburgh, PA, USA, 1993.Google Scholar
  15. 15.
    G. Hirzinger, K. Landzettel, and Ch. Fagerer. Telerobotics with large time delays-the ROTEX experience. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), München, Germany, 1994.Google Scholar
  16. 16.
    E. Freund and J. Rossmann. Space Robot Commanding and Supervision by means of Projective Virtual Reality: The ERA Experiences. In Proc. of the 7th Conference on Telemanipulator and Telepresence Technologies, pages 312–322, 2000.Google Scholar
  17. 17.
    G. Hirzinger, K. Landzettel, D. Reintsema, C. Preusche, A. Albu-Schäffer, B. Rebele, and M. Turk. ROKVISS-Robotics Component Verification on ISS. In Proc. of the 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space (iSAIRAS), München, Germany, 2005.Google Scholar
  18. 18.
    G. Hirzinger, B. Brunner, R. Lampariello, K. Landzettel, J. Schott, and B.-M. Steinmetz. Advances in Orbital Robotics. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), pages 898–907, 2000.Google Scholar
  19. 19.
    G. Hirzinger, B. Brunner, R. Lampariello, K. Landzettel, G. Schreiber et al. A Unified Ground Control and Programming Methodology for Space Robotics Applications-Demonstrations on ETS-VII. In Proc. of the International Symposium on Robotics (ISR 2000), pages 422–427, 2000.Google Scholar
  20. 20.
    G. Hirzinger, K. Landzettel, B. Brunner, M. Fischer, C. Preusche, D. Reintsema, A. Albu-Schäffer, G. Schreiber, and B.M. Steinmetz. DLR’s Robotics Technologies for On-Orbit Servicing. In Advanced Robotics, Special Issue on Service Robots in Space (1), 18:139–174, 2004.Google Scholar
  21. 21.
    R. Lampariello and G. Hirzinger. Freeflying Robots-Inertial Parameters Identification and Control Strategies. In Proc. of ASTRA 2000-The 6th ESA Workshop on Advanced Space Technologies for Robotics and Automation, Noordwijk, The Netherlands, 2000.Google Scholar
  22. 22.
    G. Hirzinger, K. Landzettel, B. Brunner, I. Schaefer, M. Fischer et al. DLR’s Robotics Lab-Recent developements in Space Robotics. In Proc. of the 5th International Symposium on Artificial Intelligence, Robotics and Automation (iSAIRAS), Noordwijk, The Netherlands, 1999.Google Scholar
  23. 23.
    K. Landzettel, B. Brunner, R. Lampariello, C. Preusche, D. Reintsema, and G. Hirzinger. System Prerequisites and Operational Modes for On-Orbit-Servicing. In The International Symposium on Space Technology and Science (ISTS), Miyazaki, Japan, 2004.Google Scholar
  24. 24.
    K. Landzettel, B. Brunner, K. Deutrich, G. Hirzinger, G. Schreiber, and B.-M. Steinmetz. DLR’s Experiments on the ETS VII Space Robot Mission. In Proc. of the 9th International Conference on Advanced Robotics (ICAR), Tokyo, JapanGoogle Scholar
  25. 25.
    R. Lampariello, S. Agrawal, and G. Hirzinger. Optimal Motion Planning of Free-Flying Robots. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2003.Google Scholar
  26. 26.
    B. Rebele, R. Krenn, and B. Schäfer. Grasping Strategies and Dynamic Aspects in Satellite Capturing by Robotic Manipulator. In Proc. of ASTRA 2002-The 7th ESA Workshop on Advanced Space Technologies for Robotics and Automation, Noordwijk, The Netherlands, 2002.Google Scholar
  27. 27.
    K. Arbter, J. Langwald, G. Hirzinger, G.Q. Wei, and P. Wunsch. Proven Techniques for Robust Visual Servo Control. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 1998.Google Scholar
  28. 28.
    B. Hannaford and J.H. Ryu. Time Domain Passivity Control of Haptic Interfaces. IEEE-Transactions on Robotics and Automation, 18:1–10, 2002.CrossRefGoogle Scholar
  29. 29.
    J.H. Ryu, B. Hannaford, C. Preusche, and G. Hirzinger. Time Domain Passivity Control with Reference Energy Behavior. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 3:2932–2937, 2003.Google Scholar
  30. 30.
    C. Preusche, G. Hirzinger, J.H. Ryu, and B. Hannaford. Time Domain Passivity Control for 6 Degrees of Freedom Haptic Displays. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 3:2944–2949, 2003.Google Scholar
  31. 31.
    G. Hirzinger, N. Sporer, A. Albu-Schäffer, M. Hähnle, R. Krenn, A. Pascucci, and M. Schedl. DLR’s torque-controlled light weight robot III-are we reaching the technological limits now?. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), pages 1710–1716, 2002.Google Scholar
  32. 32.
    G. Hirzinger, N. Sporer, M. Schedl, J. Butterfaß, and M. Grebenstein. Robotics and Mechatronics in Aerospace. In The 7th International Workshop on Advanced Motion Control (AMC), pages 19–27, 2002.Google Scholar
  33. 33.
    G. Hirzinger, B. Brunner, J. Dietrich, and J. Heindl. ROTEX-The First Remotely Controlled Robot in Space. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 3:2604–2611, 1994.Google Scholar
  34. 34.
    G. Hirzinger, J. Butterfaß, M. Grebenstein, I. Schaefer, N. Sporer, M. Fischer, H. Liu, A. Albu-Schäffer, M. Schedl, and P. Neumann. Space Robotics-Driver for a new mechatronic Generation of light-weight arms and multifingered hands. In Proc. of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pages 1160–1168, 2001.Google Scholar
  35. 35.
    G. Hirzinger, K. Landzettel, B. Brunner, M. Fischer, C. Preusche, D. Reintsema, A. Albu-Schäffer, G. Schreiber, and B.-M. Steinmetz. DLR’s robotics technologies for on-orbit servicing. Advanced Robotics, RSJ-The International Journal of the Robotics Society of Japan, 18(2):139–174. VSP, Netherlands, ISSN 0169-1864, 2004.Google Scholar
  36. 36.
    B. Schäfer and M. Lösch. Simulation of Elastic Space Manipulator Dynamics During Satellite Capturing. In Proc. of the 4th International Conference of the European Association for Structural Dynamics (EURODYN’ 99), Prague, Czech Republic, 1999.Google Scholar
  37. 37.
    B. Schäfer, M. Lösch, and K. Landzettel. Simulation of Manipulator Deployment and Satellite Capturing Dynamics. In Proc. of the 5th ESA Workshop on Advanced Space Technologies for Robotics and Automation (ASTRA 98), Noordwijk, The Netherlands, 1998.Google Scholar
  38. 38.
    R. WLongman, R.E. Lindberg and M.F. Zedd. Satellite-mounted Robot Manipulators-New kinematic and Reaction Moment Compensation. International Journal of Robotics Research (3), 1987.Google Scholar
  39. 39.
    S. Dubowsky and E. Papadopoulos. The Kinematics, Dynamics and Control of Free-Flying and Free-Floating Space Robotic Systems. IEEE Transactions on Robotics and Automation (5), 1993.Google Scholar
  40. 40.
    H.G. McCain and J.F. Andary. The Flight Telerobotic Servicer Project and systems overview. In Electronics and Aerospace Conference, 18(2):139–174, 1988.Google Scholar
  41. 41.
    M. Oda and D. Toshitsugu. Teleoperation System of ETS-VII Robot Experiment Satellite. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 3:1644–50, 1997.Google Scholar
  42. 42.
    M. Oda, T. Doi and K. Wakata. Tele-manipulation of a satellite mounted robot by an on-ground astronaut. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2:1891–96, 2001.Google Scholar
  43. 43.
    M. Oda. Space Robot Experiments on NASDAs ETS-VII Satellite. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2:1390–1395, 1999.MathSciNetGoogle Scholar
  44. 44.
    W.-K. Yoon, T. Goshozono, H. Kawabe, M. Kinami, Y. Tsumaki, M. Uchiyama, M. Oda, and T. Doi. Model-based teleoperation of a Space robot on ETS-VII using a haptic interface. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 1:407–12, 2001.Google Scholar
  45. 45.
    I. Kawano, M. Mokuno, et. al. Result of Autonomous Rendezvous Docking Experiment of Engineering Test Satellite VII. Journal of Spacecraft and Rockets, 38(1):105–111, 2001.CrossRefGoogle Scholar
  46. 46.
    I. Kawano, M. Mokuno, T. Miyano, and T. Suzuki. Analysis and Evaluation of GPS Relative Navigation Using Carrier Phase for RVD Experiment Satellite of ETS-VII. In ION GPS 2000-The 13th International Technical Meeting of the Satellite Division of the Institute of Navigation, pages 1655–60, 2000.Google Scholar
  47. 47.
    G. Visentin and F. Didot. Testing Space Robotics on the Japanese ETS-VII Satellite. In ESA Bulletin, 99:61–65, 1999.Google Scholar
  48. 48.
    I. Kawano, et. al. First Results of Autonomous Rendezvous Docking Experiments on NASDA’s ETS-VII Satellite. In Proceedings of the 49th International Astronautical Congress, Melbourne, Australia, 1998.Google Scholar
  49. 49.
    Y. Fukushima, N. Inaba, and M. Oda. Capture and berthing experiment of a massive object using ETS-VII’s space robot-World’s first on-orbit satellite capture experiment by space robot system. In Proceedings of AIAA/AAS Astrodynamics Specialist Conference, Denver, CO, 2000.Google Scholar
  50. 50.
    K. Yoshida, K. Hashizume, and S. Abiko. Zero Reaction Maneuver: Flight Validation with ETS-VII Space Robot and Extension to Kinematically Redundant Arm. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 1:441–46, 2001.Google Scholar
  51. 51.
    T. Imaida, Y. Yokokohji, T. Doi, M. Oda, and T. Yoshikawa. Ground-Space Bilateral Teleoperation Experiment Using ETS-VII Robot Arm with Direct Kinesthetic Coupling. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 1:1031–1038, 2001.Google Scholar
  52. 52.
    Y. Yokokohji, T. Imaida, Y. Iida, T. Doi, M. Oda, and T. Yoshikawa. Bilateral Teleoperation: Towards Fine Manipulation with Large Time Delay. (ISER), pages 11–20, 2000.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Detlef Reintsema
    • 1
  • Klaus Landzettel
    • 1
  • Gerd Hirzinger
    • 1
  1. 1.Institute of Robotics and MechatronicsGerman Aerospace Center (DLR)WesslingGermany

Personalised recommendations