Skip to main content

A Computational Framework for Cardiac Modeling Based on Distributed Computing and Web Applications

  • Conference paper
High Performance Computing for Computational Science - VECPAR 2006 (VECPAR 2006)

Abstract

Cardiac modeling is here to stay. Computer models are being used in a variety of ways and support the tests of drugs, the development of new medical devices and non-invasive diagnostic techniques. Computer models have become valuable tools for the study and comprehension of the complex phenomena of cardiac electrophysiology. However, the complexity and the multidisciplinary nature of cardiac models still restrict its use to a few specialized research centers in the world. We propose a computational framework that provides support for cardiac electrophysiology modeling. This framework integrates different computer tools and allows one to bypass many complex steps during the development and use of cardiac models. The implementation of cardiac cell models is automatically provided by a tool that translates models described in CellML language to executable code that allows one to manipulate and solve the models numerically. The automatically generated cell models are integrated in an efficient 2-dimensional parallel cardiac simulator. The set up and use of the simulator is supported by a user-friendly graphical interface that offers the tasks of simulation configuration, parallel execution in a pool of connected computer clusters, storage of results and basic visualization. All these tools are being integrated in a Web portal that is connected to a pool of clusters. The Web portal allows one to develop and simulate cardiac models efficiently via this user-friendly integrated environment. As a result, the complex techniques and the know-how behind cardiac modeling are all taken care of by the web distributed applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Henriquez, C.S.: Simulating the electrical behavior of cardiac tissue using the bidomain model. Crit. Rev. Biomed. Eng. 21, 1–77 (1993)

    Google Scholar 

  2. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  3. Gima, K., Rudy, Y.: Ionic current basis of electrocardiographic waveforms: a model study. Circ. Res. 90, 889–896 (2002)

    Article  Google Scholar 

  4. Santos, R.W.D., et al.: Modelling the electrical propagation in cardiac tissue using detailed histological data. Biomedical Engineering 48, 476–478 (2003)

    Google Scholar 

  5. Santos, R.W.D., et al.: MCG to ECG source differences: measurements and a 2D computer model study. Journal Of Electrocardiology, 37 Suppl. (2004)

    Google Scholar 

  6. CellML biology, math, data, knowledge. Internet site address: http://www.cellml.org/

  7. MPI (Message Passing Interface). Internet site address: http://www.mpi-forum.org/

  8. Santos, R.W.D., et al.: Parallel Multigrid Preconditioner for the Cardiac Bidomain Model. IEEE Trans. Biomed. Eng. 51(11), 1960–1968 (2004)

    Article  Google Scholar 

  9. Mathematical Markup Language (MathML) Version 2.0, 2nd edn., Internet site address: http://www.w3.org/TR/MathML2/

  10. Lloyd, C.M., Halstead, M.D.B., Nielsen, P.F.: CellML: its future, present and past. Biophysics & Molecular Biology 85, 433–450 (2004)

    Article  Google Scholar 

  11. FISIOCOMP: Laboratory of Computational Physiology, internet site address: http://, http://www.fisiocomp.ufjf.br/

  12. Sepulveda, N.G., Roth, B.J., Wikswo Jr., J.P.: Current injection into a two-dimensional anistropic bidomain. Biophysical J. 55, 987–999 (1989)

    Google Scholar 

  13. Vigmond, E., Aguel, F., Trayanova, N.: Computational techniques for solving the bidomain equations in three dimensions. IEEE Trans. Biomed. Eng. 49, 1260–1269 (2002)

    Article  Google Scholar 

  14. Sundnes, J., Lines, G., Tveito, A.: Efficient solution of ordinary differential equations modeling electrical activity in cardiac cells. Math. Biosci. 172(2), 55–72 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Keener, J., Bogar, K.: A numerical method for the solution of the bidomain equations in cardiac tissue. Chaos 8(1), 234–241 (1998)

    Article  MATH  Google Scholar 

  16. Santos, R.W.D., et al.: Preconditioning techniques for the bidomain equations. Lecture Notes In Computational Science And Engineering 40, 571–580 (2004)

    Article  Google Scholar 

  17. PETSc: Portable, Extensible Toolkit for Scientific Computation. Internet site address: http://www-unix.mcs.anl.gov/petsc/petsc-as/

  18. Calgary University. Internet site address: http://www.ucalgary.ca/

  19. NAPCI Rocks. Internet site address: http://www.rocksclusters.org/Rocks/

  20. Muzikant, A.L., Henriquez, C.S.: Validation of three-dimensional conduction models using experimental mapping: are we getting closer? Prog. Biophys. Mol. Biol. 69, 205–223 (1998)

    Article  Google Scholar 

  21. Krassowska, W., Neu, J.C.: Effective boundary conditions for syncytial tissues. IEEE Trans. Biomed. Eng 41, 143–150 (1994)

    Article  Google Scholar 

  22. ten Tusscher, K.H.W.J., et al.: A model for human ventricular tissue. J. Physiol. 286, 1573–1589 (2004)

    Google Scholar 

  23. Henson, V.E., Yang, U.M.: BoomerAMG: a Parallel Algebraic Multigrid Solver and Preconditioner. Technical Report UCRL-JC-139098, Lawrence Livermore National Laboratory (2000)

    Google Scholar 

  24. Sun Microsystems. Internet site address: http://java.sun.com/products/jsp/

  25. Apache Software Foundation. Internet site address: http://struts.apache.org/

  26. The PHP Group. Internet site address: http://www.php.net/

  27. MySQL AB. Internet site address: http://www.mysql.com/

  28. The Apache Jakarta Project. Internet site address: http://jakarta.apache.org/tomcat/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michel Daydé José M. L. M. Palma Álvaro L. G. A. Coutinho Esther Pacitti João Correia Lopes

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Martins, D.M.S. et al. (2007). A Computational Framework for Cardiac Modeling Based on Distributed Computing and Web Applications. In: Daydé, M., Palma, J.M.L.M., Coutinho, Á.L.G.A., Pacitti, E., Lopes, J.C. (eds) High Performance Computing for Computational Science - VECPAR 2006. VECPAR 2006. Lecture Notes in Computer Science, vol 4395. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71351-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71351-7_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71350-0

  • Online ISBN: 978-3-540-71351-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics