Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4395))

  • 735 Accesses

Abstract

We present novel multiresolution particle methods with extended dynamic adaptivity in areas where increased resolution is required. In the framework of smooth particle methods we present two adaptive approaches: one based on globally adaptive mappings and one employing a wavelet-based multiresolution analysis to guide the allocation of computational elements. Preliminary results are presented from the application of these methods to problems involving the development of sharp vorticity gradients. The present particle methods are employed in large scale parallel computer architectures demonstrating a high degree of parallelization and enabling state of the art large scale simulations of continuum systems using particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergdorf, M., Cottet, G.-H., Koumoutsakos, P.: Multilevel adaptive particle methods for convection-diffusion equations. Multiscale Modeling and Simulation 4(1), 328–357 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cottet, G.-H., Koumoutsakos, P., Salihi, M.L.O.: Vortex methods with spatially varying cores. Journal of Computational Physics 162, 164–185 (2000)

    Article  MATH  Google Scholar 

  3. Cottet, G.-H., Poncet, P.: Advances in direct numerical simulations of 3d wall-bounded flows by vortex-in-cell methods. Journal of Computational Physics 193, 136–158 (2003)

    Article  MathSciNet  Google Scholar 

  4. Degond, P., Mas-Gallic, S.: The weighted particle method for convection-diffusion equations. part 2: The anisotropic case. Mathematics of Computation 53(188), 509–525 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. Deslauriers, G., Dubuc, S.: Symmetric iterative interpolation processes. Constructive Approximation 5, 49–68 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Eldredge, J.D., Leonard, A., Colonius, T.: A general deterministic treatment of derivatives in particle methods. Journal of Computational Physics 180, 686–709 (2002)

    Article  MathSciNet  Google Scholar 

  7. Enright, D., et al.: A hybrid particle level set method for improved interface capturing. Journal of Computational Physics 183(1), 83–116 (2002), http://www.sciencedirect.com/science/article/B6WHY-47K6R4K-3/2/99337281d12c562f03ffc4ff4a4cc786

    Article  MATH  MathSciNet  Google Scholar 

  8. Harlow, F.H.: Particle-in-cell computing method for fluid dynamics. Methods in Computational Physics 3, 319–343 (1964)

    Google Scholar 

  9. Hieber, S.E., Koumoutsakos, P.: A Lagrangian particle level set method. Journal of Computational Physics 210(1), 342–367 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hou, T.Y.: Convergence of a variable blob vortex method for the euler and navier-stokes equations. SIAM Journal on Numerical Analysis 27(6), 1387–1404 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Koumoutsakos, P.: Multiscale flow simulations using particles. Annual Review of Fluid Mechanics 37(1), 457–487 (2005), http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.fluid.37.061903.175753

    Article  MathSciNet  Google Scholar 

  12. Leveque, R.J.: High-resolution conservative algorithms for advection in incompressible flow. SIAM Journal on Numerical Analysis 33(2), 627–665 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Liandrat, J., Tchamitchian, P.: Resolution of the 1D regularized burgers equation using a spatial wavelet approximation. ICASE Report 90-83, NASA Langley Research Center (1990)

    Google Scholar 

  14. Monaghan, J.J.: Extrapolating b-splines for interpolation. Journal of Computational Physics 60, 253–262 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ploumhans, P., Winckelmans, G.S.: Vortex methods for high-resolution simulations of viscous flow past bluff bodies of general geometry. Journal of Computational Physics 165, 354–406 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sbalzarini, I.F., et al.: PPM – a highly efficient parallel particle-mesh library. Journal of Computational Physics 215(2), 566–588 (2006)

    Article  MATH  Google Scholar 

  17. Tornberg, A.-K., Engquist, B.: Numerical approximations of singular source terms in differential equations. Journal of Computational Physics 200, 462–488 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Vasilyev, O.V.: Solving multi-dimensional evolution problems with localized structures using second-generation wavelets. International Journal of Computational Fluid Dynamics 17(2), 151–168 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Walther, J.H., Koumoutsakos, P.: Three-dimensional particle methods for particle laden flows with two-way coupling. Journal of Computational Physics 167, 39–71 (2001)

    Article  MATH  Google Scholar 

  20. Wang, Q.X.: Variable order revised binary treecode. Journal of Computational Physics 200(1), 192 (2004), http://www.sciencedirect.com/science/article/B6WHY-4CB64JR-8/2/77e29171a0362c44a7e9a25473d04411

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michel Daydé José M. L. M. Palma Álvaro L. G. A. Coutinho Esther Pacitti João Correia Lopes

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Bergdorf, M., Koumoutsakos, P. (2007). Multiresolution Simulations Using Particles. In: Daydé, M., Palma, J.M.L.M., Coutinho, Á.L.G.A., Pacitti, E., Lopes, J.C. (eds) High Performance Computing for Computational Science - VECPAR 2006. VECPAR 2006. Lecture Notes in Computer Science, vol 4395. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71351-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71351-7_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71350-0

  • Online ISBN: 978-3-540-71351-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics