Skip to main content

Part of the book series: Principles and Practice ((PRINCIPLES))

In living cells protein signalling is a complex dynamic process. We discuss the spatiotemporal aspects of such signalling and how the variety of different optical imaging techniques can deal with the necessary temporal and high optical resolution. We consider techniques like confocal laser scanning microscopy, kilobeam scanning, nonlinear microscopy, selective plane imaging, structured illumination, total internal reflection fluorescence microscopy, near-field optical microscopy and fluorescence lifetime imaging. Complementary to the technological aspects we discuss different approaches of how to make specific proteins visible, including bioluminescence, autofluorescence, immunohistochemistry, fluorescence-fusion proteins and specific covalent labelling of proteins. Finally we introduce concepts to image protein signalling. Protein dynamics are considered on the basis of translocations of fluorescent protein tagged conventional protein kinase C. Protein–protein interactions can best be investigated in living cells by molecular interaction of fluorescence-protein tags, namely bimolecular fluorescence complementation or Förster resonance energy transfer (FRET). Today, modern imaging techniques even allow the investigation of biochemical reactions such as kinasemediated phosphorylation in living cells. Such genetically engineered biosensors make use of conformational changes that induce changes of intramolecular FRET.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams SR, Campbell RE, Gross LA, Martin BR, Walkup GK, Yao Y, Llopis J, Tsien RY (2002) New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc 124:6063–6076.

    Article  CAS  PubMed  Google Scholar 

  • Anderson KE, Lipp P, Bootman M, Ridley SH, Coadwell J, Ronnstrand L, Lennartsson J, Holmes AB, Painter GF, Thuring J, Lim Z, Erdjument-Bromage H, Grewal A, Tempst P, Stephens LR, Hawkins PT (2000) DAPP1 undergoes a PI 3-kinase-dependent cycle of plasma-membrane recruitment and endocytosis upon cell stimulation. Curr Biol 10:1403–1412.

    Article  CAS  PubMed  Google Scholar 

  • Bartlett PJ, Young KW, Nahorski SR, Challiss RA (2005) Single cell analysis and temporal profiling of agonist-mediated inositol 1, 4, 5-trisphosphate, Ca2+, diacylglycerol, and protein kinase C signaling using fluorescent biosensors. J Biol Chem 280:21837–21846.

    Article  CAS  PubMed  Google Scholar 

  • Bouzid A, Lechleiter J (2002) Laser scanning fluorescence microscopy with compensation for spatial dispersion of fast laser pulses. US Patent Appl 2002/0176076.

    Google Scholar 

  • Brumbaugh J, Schleifenbaum A, Gasch A, Sattler M, Schultz C (2006) A dual parameter FRET probe for measuring pKc and pKa activity in living cells. J Am Chem Soc 128:24–25.

    Article  CAS  PubMed  Google Scholar 

  • Denk W, Piston DW, Webb WW (1995) Two-photon molecular excitation in laser-scanning microscopy. In: Pawley JB (ed) Handbook of biological confocal microscopy. Plenum, New York, pp 445–458.

    Google Scholar 

  • Dudovich N, Oron D, Silberberg Y (2002) Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature 418:512–514.

    Article  CAS  PubMed  Google Scholar 

  • Egner A, Andresen V, Hell SW (2002) Comparison of the axial resolution of practical Nipkow-disc confocal fluorescence microscopy with that of multifocal multiphoton microscopy: theory and experiment. J Microsc 206:24–32.

    Article  CAS  PubMed  Google Scholar 

  • Egner A, Hell S (2005) Fluorescence microscopy with super-resolved optical sections. Trends Cell Biol 15:207–15.

    Article  CAS  PubMed  Google Scholar 

  • Ellson CD, Anderson KE, Morgan G, Chilvers ER, Lipp P, Stephens LR, Hawkins PT (2001) Phosphatidylinositol 3-phosphate is generated in phagosomal membranes. Curr Biol 11:1631–1635.

    Article  CAS  PubMed  Google Scholar 

  • Evans CL, Potma EO, Puoris’haag M, Cote D, Lin CP, Xie XS (2005) Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. Proc Natl Acad Sci USA 102:16807–16812.

    Article  CAS  PubMed  Google Scholar 

  • Gaietta GM, Giepmans BN, Deerinck TJ, Smith WB, Ngan L, Llopis J, Adams SR, Tsien RY, Ellisman MH (2006) Golgi twins in late mitosis revealed by genetically encoded tags for live cell imaging and correlated electron microscopy. Proc Natl Acad Sci USA 103:17777–17782.

    Article  CAS  PubMed  Google Scholar 

  • Gallegos LL, Kunkel MT, Newton AC (2006) Targeting protein kinase C activity reporter to discrete intracellular regions reveals spatiotemporal differences in agonist-dependent signaling. J Biol Chem 281:30947–30956.

    Article  CAS  PubMed  Google Scholar 

  • Ganesan S, Ameer-Beg SM, Ng TT, Vojnovic B, Wouters FS (2006) A dark yellow fluorescent protein (YFP)-based resonance energy-accepting chromoprotein (reach) for Forster resonance energy transfer with GFP. Proc Natl Acad Sci USA 103:4089–4094.

    Article  CAS  PubMed  Google Scholar 

  • Griffin BA, Adams SR, Tsien RY (1998) Specific covalent labeling of recombinant protein molecules inside live cells. Science 281:269–272.

    Article  CAS  PubMed  Google Scholar 

  • Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated emission depletion microscopy. Opt Lett 19:780–782.

    Article  Google Scholar 

  • Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EH (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305:1007–1009.

    Article  CAS  PubMed  Google Scholar 

  • Kaestner L, Juzeniene A, Moan J (2004) Erythrocytes-the ‘house elves’ of photodynamic therapy. Photochem Photobiol Sci 3:981–989.

    Article  CAS  PubMed  Google Scholar 

  • Kerppola TK (2006) Visualization of molecular interactions by fluorescence complementation. Nat Rev Mol Cell Biol 7:449–456.

    Article  CAS  PubMed  Google Scholar 

  • Lakowicz JR, Szmacinski H, Nowaczyk K, Johnson ML (1992) Fluorescence lifetime imaging of calcium using Quin-2. Cell Calcium 13:131–147.

    Article  CAS  PubMed  Google Scholar 

  • Lipp P, Kaestner L (2006) Image based high content screening–a view from basic science. In: Hüser J (ed) High-throughput screening in drug discovery. Wiley-VCH, Weinheim, pp 129–149.

    Chapter  Google Scholar 

  • Magliery TJ, Wilson CG, Pan W, Mishler D, Ghosh I, Hamilton AD, Regan L (2005) Detecting protein-protein interactions with a green fluorescent protein fragment reassembly trap: scope and mechanism. J Am Chem Soc 127:146–157.

    Article  CAS  PubMed  Google Scholar 

  • Menger MD, Jager S, Walter P, Hammersen F, Messmer K (1990) A novel technique for studies on the microvasculature of transplanted islets of Langerhans in vivo. Int J Microcirc Clin Exp 9:103–117.

    CAS  PubMed  Google Scholar 

  • Minsky M. (1957) Microscopy apparatus. US Patent 3, 013, 467.

    Google Scholar 

  • Neil MA, Juskaitis R, Wilson T (1997) Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt Lett 22:1905–1907.

    Article  CAS  PubMed  Google Scholar 

  • Nipkow P (1884) Elektrisches teleskop. Kaiserliches Patentamt, Germany.

    Google Scholar 

  • Pappenheim A (1908) Panoptische Universalfärbung für Blutpräparate. Med Klin 32:1244.

    Google Scholar 

  • Parker I, Ivorra I (1993) Confocal microfluorimetry of Ca2+ signals evoked in xenopus oocytes by photoreleased inositol trisphosphate. J Physiol 461:133–165.

    CAS  PubMed  Google Scholar 

  • Piston DW, Masters BR, Webb WW (1995) Three-dimensionally resolved NAD(P) H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy. J Microsc 178:20–27.

    CAS  PubMed  Google Scholar 

  • Reither G, Schaefer M, Lipp P (2006) PKCR: a versatile key for decoding the cellular calcium toolkit. J Cell Biol 174:521–533.

    Article  CAS  PubMed  Google Scholar 

  • Roorda RD, Miesenbock G (2002) Beam-steering of multi-chromatic light using acousto-optical deflectors and dispersion-compensatory optics. US Patent Appl 2002/0149769.

    Google Scholar 

  • Schaefer M, Albrecht N, Hofmann T, Gudermann T, Schultz G (2001) Diffusion-limited translocation mechanism of protein kinase C isotypes. FASEB J 15:1634–1636.

    CAS  PubMed  Google Scholar 

  • Schleifenbaum A, Stier G, Gasch A, Sattler M, Schultz C (2004) Genetically encoded fret probe for pKc activity based on pleckstrin. J Am Chem Soc 126:11786–11787.

    Article  CAS  PubMed  Google Scholar 

  • Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572.

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama O, An DS, Kung SP, Feeley BT, Gamradt S, Liu NQ, Chen IS, Lieberman JR (2005) Lentivirus-mediated gene transfer induces long-term transgene expression of BMP-2 in vitro and new bone formation in vivo. Mol Ther 11:390–398.

    Article  CAS  PubMed  Google Scholar 

  • Sun CK (2005) Higher harmonic generation microscopy. Adv Biochem Eng Biotechnol 95:17–56.

    PubMed  Google Scholar 

  • Violin JD, Zhang J, Tsien RY, Newton AC (2003) A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C. J Cell Biol 161:899–909.

    Article  CAS  PubMed  Google Scholar 

  • Wabuyele MB Culha M, Griffin GD, Viallet PM, Vo-Dinh T (2005) Near-field scanning optical microscopy for bioanalysis at nanometer resolution. Methods Mol Biol 300:437–452.

    Google Scholar 

  • Wazawa T, Ueda M (2005) Total internal reflection fluorescence microscopy in single molecule nanobioscience. Adv Biochem Eng Biotechnol 95:77–106.

    CAS  PubMed  Google Scholar 

  • Zhang J, Ma Y, Taylor SS, Tsien RY (2001) Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. Proc Natl Acad Sci USA 98:14997–15002.

    Article  CAS  PubMed  Google Scholar 

  • Zimmer M (2005) Glowing genes: a revolution in biotechnology. Prometheus, Amherst.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kaestner, L., Lipp, P. (2007). Towards Imaging the Dynamics of Protein Signalling. In: Shorte, S.L., Frischknecht, F. (eds) Imaging Cellular and Molecular Biological Functions. Principles and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71331-9_10

Download citation

Publish with us

Policies and ethics