Skip to main content

Entering the Portal: Understanding the Digital Image Recorded Through a Microscope

  • Chapter
Imaging Cellular and Molecular Biological Functions

Part of the book series: Principles and Practice ((PRINCIPLES))

The primary considerations in imaging living cells in the microscope with a digital camera are detector sensitivity (signal-to-noise), the required speed of image acquisition, and specimen viability. The relatively high light intensities and long exposure times that are typically employed in recording images of fixed cells and tissues (where photobleaching is the major consideration) must be strictly avoided when working with living cells. In virtually all cases, live-cell microscopy represents a compromise between achieving the best possible image quality and preserving the health of the cells. Rather than unnecessarily oversampling time points and exposing the cells to excessive levels of illumination, the spatial and temporal resolutions set by the experiment should be limited to match the goals of the investigation. This chapter describes the fundamentals of digital image acquisition, spatial resolution, contrast, brightness, bit depth, dynamic range, and CCD architecture, as well as performance measures, image display and storage, and imaging modes in optical microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Axelrod D (2003) Total internal reflection fluorescence microscopy in cell biology. Methods Enzymol 361:1–33.

    Article  CAS  PubMed  Google Scholar 

  • Bastiaens PIH, Squire A (1999) Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in a cell. Trends Cell Biol 9:48–52.

    Article  CAS  PubMed  Google Scholar 

  • Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645.

    Article  CAS  PubMed  Google Scholar 

  • Berland K, Jacobson K, French T (1998) Electronic cameras for low-light microscopy. Methods Cell Biol 56:19–44.

    Article  CAS  PubMed  Google Scholar 

  • Bradbury S (1967) The evolution of the microscope. Pergamon, New York.

    Google Scholar 

  • Cannell MB, McMorlad A, Soeller C (2006) Image enhancement by deconvolution. In: Pawley JB (ed) Handbook of biological confocal microscopy, 3rd edn. Springer, New York, pp 488–500.

    Google Scholar 

  • Castleman KR (1993) Resolution and sampling requirements for digital image processing, analysis, and display. In: Shotton D (ed) Electronic light microscopy: techniques in modern biomedical microscopy. Wiley-Liss, New York, pp 71–93.

    Google Scholar 

  • Chudakov DM, Lukyanov S, Lukyanov KA (2005) Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol 23:605–613.

    Article  CAS  PubMed  Google Scholar 

  • Coates C, Denvir D, Conroy E, McHale N, Thornbury K, Hollywood M (2003) Back illuminated electron multiplying technology: the world’s most sensitive CCD for ultra low light microscopy. J Biomed Opt 9:1244–2004.

    Article  Google Scholar 

  • Dailey ME, Manders E, Soll DR, Terasaki M (2006) Confocal microscopy of living cells. In: Pawley JB (ed) Handbook of biological confocal microscopy, 3rd edn. Springer, New York, pp 381–403.

    Google Scholar 

  • Danuser G, Waterman-Storer CM (2006) Quantitative fluorescent speckle microscopy of cytoskeletal dynamics. Annu Rev Biophys Biomol Struct 35:361–387.

    Article  CAS  PubMed  Google Scholar 

  • Davidson MW, Abramowitz M (2002) Optical microscopy. In: Hornak JP (ed) Encyclopedia of imaging science and technology. Wiley, New York, pp 1106–1140.

    Google Scholar 

  • Day RN (2005) Imaging protein behavior inside the living cell. Mol Cell Endocrinol 230:1–6.

    Article  CAS  PubMed  Google Scholar 

  • Delly JG, Olenych S, Claxton N, Davidson MW (2007) Digital photomicrography. In: The focal encyclopedia of photography. Focal, New York, pp 592–601.

    Google Scholar 

  • de Monvel JB, Scarfone E, Le Calvez S, Ulfendahl M (2003) Image adaptive deconvolution for three dimensional deep biological imaging. Biophys J 85:3991–4001.

    Article  PubMed  Google Scholar 

  • Denvir DJ, Contry E (2002) Electron multiplying CCDs. Proc SPIE 4877:55–68.

    Article  Google Scholar 

  • Gastou P, Comandon J (1909) L’ultramicroscope et son role essential dans le diagnostic de la syphilis. J Med Fr 4.

    Google Scholar 

  • Goldman RD, Spector DL (2005) Live cell imaging: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  • Gustafsson MGL, Agard DA, Sedat JW (1995) Sevenfold improvement of axial resolution in 3D widefield microscopy using two objective lenses. Proc Soc Photo-Opt Instrum Eng 2412:147–156.

    Google Scholar 

  • Haugland RP (2005) A guide to fluorescent probes and labeling technologies. Invitrogen/Molecular Probes, Eugene.

    Google Scholar 

  • Hell SW (2003) Toward fluorescence nanoscopy. Nat Biotechnol 21:1347–1355.

    Article  CAS  PubMed  Google Scholar 

  • Hell SW, Stelzer EHK (1992) Properties of a 4Pi-confocal fluorescence microscope. J Opt Soc Am A 9:2159–2166.

    Article  Google Scholar 

  • Hell SW Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated emission depletion microscopy. Opt Lett 19:780–782.

    Article  Google Scholar 

  • Holmes TJ, Biggs D, Abu-Tarif A (2006) Blind deconvolution. In: Pawley JB (ed) Handbook of biological confocal microscopy, 3rd edn. Springer, New York, pp 468–487.

    Google Scholar 

  • Holst GC (1998) CCD arrays, cameras, and displays. SPIE, Bellingham.

    Google Scholar 

  • Inoue S, Spring KG (1997) Video microscopy: the fundamentals. Plenum, New York.

    Google Scholar 

  • Janesick JR (2001) Scientific charge-coupled devices. SPIE, Bellingham.

    Google Scholar 

  • Jansson PA (1997) Deconvolution of images and spectra, 2nd edn. Academic, New York.

    Google Scholar 

  • Jardine L (2004) The curious life of Robert Hooke. HarperCollins, New York.

    Google Scholar 

  • Jonkman JEN, Stelzer EHK (2002) Resolution and contrast in confocal and two-photon microscopy. In: Diaspro A (ed) Confocal and two-photon microscopy: foundations, applications, and advances. Wiley-Liss, New York, pp 101–125.

    Google Scholar 

  • Kim SA, Schwille P (2003) Intracellular applications of fluorescence correlation spectroscopy: prospects for neuroscience. Curr Opin Neurobiol 13:583–590.

    Article  CAS  PubMed  Google Scholar 

  • Lackowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer/Plenum, New York.

    Google Scholar 

  • Lippincott-Schwartz J, Altan-Bonnet N, Patterson GH (2003) Photobleaching and photoactivation: following protein dynamics in living cells. Nat Cell Biol S7–S14.

    Google Scholar 

  • Murphy DB (2001) Fundamentals of light microscopy and digital imaging. Wiley-Liss, New York.

    Google Scholar 

  • Pawley J (2003) The intensity spread function (ISF): a new metric of photodetector performance. http://www.focusonmicroscopy.org/2003/abstracts/107-Pawley.pdf.

  • Pawley J (2006a) Points, pixels, and gray Levels: digitizing image data. In: Pawley JB (ed) Handbook of biological confocal microscopy, 3rd edn. Springer, New York, pp 59–79.

    Google Scholar 

  • Pawley J (2006b) Fundamental limits in confocal microscopy. In: Pawley JB (ed) Handbook of biological confocal microscopy, 3rd edn. Springer, New York, pp 20–42.

    Google Scholar 

  • Pawley J (2006c) More than you ever really wanted to know about CCDs. In: Pawley JB (ed) Handbook of biological confocal microscopy, 3rd edn. Springer, New York, pp 919–932.

    Google Scholar 

  • Pawley JB (2006d) Handbook of biological confocal microscopy, 3rd edn. Springer, New York.

    Google Scholar 

  • Periasamy A, Day RN (2005) Molecular imaging: FRET microscopy and spectroscopy. Oxford University Press, New York.

    Google Scholar 

  • Piston DW (1999) Imaging living cells and tissues by two-photon excitation microscopy. Trends Cell Biol 9:66–69.

    Article  CAS  PubMed  Google Scholar 

  • Robbins M, Hadwen B (2003) The noise performance of electron multiplying charge coupled devices. IEEE Trans Electron Devices 50:1227–1232.

    Article  Google Scholar 

  • Roux P, Münter S, Frischknecht F, Herbomel P, Shorte SL (2004) Focusing light on infection in four dimensions. Cell Microbiol 6:333–343.

    Article  CAS  PubMed  Google Scholar 

  • Ruestow EG (1996) The microscope in the Dutch Republic. Cambridge University Press, New York.

    Google Scholar 

  • Russ JC (2006) The image processing handbook, 5th edn. CRC, Boca Raton.

    Google Scholar 

  • Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795.

    Article  CAS  PubMed  Google Scholar 

  • Shaw PJ (2006) Comparison of widefield/deconvolution and confocal microscopy for three-dimensional imaging. In: Pawley JB (ed) Handbook of biological confocal microscopy, 3rd edn. Springer, New York, pp 453–467.

    Google Scholar 

  • Shaw SL (2006) Imaging the live plant cell. Plant J 45:573–598.

    Article  CAS  PubMed  Google Scholar 

  • Shotton D (1993) An introduction to digital image processing and image display in electronic light microscopy. In: Shotton D (ed) Electronic light microscopy: techniques in modern biomedical microscopy. Wiley-Liss, New York, pp 39–70.

    Google Scholar 

  • Spring K (2000) Scientific imaging with digital cameras. BioTechniques 29:70–76.

    CAS  PubMed  Google Scholar 

  • Toomre D, Manstein DJ (2001) Lighting up the cell surface with evanescent wave microscopy. Trends Cell Biol 11:298–303.

    Article  CAS  PubMed  Google Scholar 

  • von Tiedemann M, Fridberger A, Ulfendahl M, de Monvel JB (2006) Image adaptive point-spread function estimation and deconvolution for in vivo confocal microscopy. Microsc Res Tech 69:10–20.

    Article  Google Scholar 

  • Wallace W, Schaefer LH, Swedlow JR (2001) A workingperson’s guide to deconvolution in light microscopy. BioTechniques 31:1076–1097.

    CAS  PubMed  Google Scholar 

  • Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3:906–918.

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann T (2005) Spectral imaging and linear unmixing in light microscopy. Adv Biochem Eng Biotechnol 95:245–265.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hazelwood, K.L., Olenych, S.G., Griffin, J.D., Cathcart, J.A., Davidson, M.W. (2007). Entering the Portal: Understanding the Digital Image Recorded Through a Microscope. In: Shorte, S.L., Frischknecht, F. (eds) Imaging Cellular and Molecular Biological Functions. Principles and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71331-9_1

Download citation

Publish with us

Policies and ethics