Skip to main content

Maximum Likelihood and Gaussian Estimation of Continuous Time Models in Finance

  • Chapter
  • First Online:

Abstract

This paper overviews maximum likelihood and Gaussian methods of estimating continuous time models used in finance. Since the exact likelihood can be constructed only in special cases, much attention has been devoted to the development of methods designed to approximate the likelihood. These approaches range from crude Euler-type approximations and higher order stochastic Taylor series expansions to more complex polynomial-based expansions and infill approximations to the likelihood based on a continuous time data record. The methods are discussed, their properties are outlined and their relative finite sample performance compared in a simulation experiment with the nonlinear CIR diffusion model, which is popular in empirical finance. Bias correction methods are also considered and particular attention is given to jackknife and indirect inference estimators. The latter retains the good asymptotic properties of ML estimation while removing finite sample bias. This method demonstrates superior performance in finite samples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn, D. and Gao, B. (1999): A parametric nonlinear model of term structure dynamics. Review of Financial Studies 12, 721–762.

    Article  Google Scholar 

  • Aït-Sahalia, Y. (1999): Transition Densities for Interest Rate and Other Nonlinear Diffusions, Journal of Finance 54, 1361–1395.

    Article  Google Scholar 

  • Aït-Sahalia, Y. (2002): Maximum likelihood estimation of discretely sampled diffusion: A closed-form approximation approach. Econometrica 70, 223–262.

    Article  MATH  MathSciNet  Google Scholar 

  • Aït-Sahalia, Y. (2007): Closed-Form Likelihood Expansions for Multivariate Diffusions. Annals of Statistics forthcoming.

    Google Scholar 

  • Aït-Sahalia, Y. and Kimmel, R. (2005): Estimating Affine Multifactor Term Structure Models Using Closed-Form Likelihood Expansions. Working Paper, Department of Economics, Princeton University.

    Google Scholar 

  • Aït-Sahalia, Y. and Kimmel, R. (2007): Maximum Likelihood Estimation of Stochastic Volatility Models. Journal of Financial Economics 83, 413–452.

    Article  Google Scholar 

  • Aït-Sahalia, Y. and Yu, J. (2006): Saddlepoint approximation for continuous-time Markov Processes. Journal of Econometrics 134, 507–551.

    Article  MathSciNet  Google Scholar 

  • Andrews, D.W.K. (1993): Exactly Median-unbiased Estimation of First Order Autoregressive/unit Root Models. Econometrica 61, 139–166.

    Article  MATH  MathSciNet  Google Scholar 

  • Bakshi, G. and Ju, N. (2005): A Refinement to Aït-Sahalia's, 2002 “Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed-Form Approximation Approach”. Journal of Business 78, 2037–2052.

    Article  Google Scholar 

  • Barndorff-Nielsen, O. and Shephard, N. (2002): Econometric analysis of realized volatility and its use in estimating stochastic volatility models. Journal of the Royal Statistical Society, Series B 64, 253–280.

    Article  MATH  MathSciNet  Google Scholar 

  • Barndorff-Nielsen, O. and Shephard, N. (2005): How accurate is the asymptotic approximation to the distribution of realized volatility?. In: Andrews, D.W.K., Powell, J., Ruud, P. and Stock, J. (Eds.): Identification and Inference for Econometric Models. Cambridge University Press.

    Google Scholar 

  • Bergstrom, A.R. (1966): Nonrecursive models as discrete approximation to systems of stochastic differential equations, Econometrica, 34, 173–82.

    Article  MATH  MathSciNet  Google Scholar 

  • Bergstrom, A.R. (1984): Continuous time stochastic models and issues of aggregation over time. In: Griliches, Z. and Intriligator, M.D. (Eds.): Handbook of Econometrics II. Elsevier Science, Amsterdam.

    Google Scholar 

  • Bergstrom, A.R. (1996): Survey of continuous time econometrics In: Barnett, W.A., Gandolfo, G. and Hillinger, C. (Eds.): Dynamic Disequilibrium Modeling, 3-25. Cambridge University Press.

    Google Scholar 

  • Bergstrom, A.R. and Nowman, B. (2006): A Continuous Time Econometric Model of the United Kingdom with Stochastic Trends. Cambridge University Press.

    Google Scholar 

  • Billingsley, P. (1961): Statistical Inference for Markov Processes. University of Chicago Press.

    Google Scholar 

  • Black, F. and Scholes, M. (1973): The pricing of options and corporate liabilities. Journal of Political Economics 81, 637–654.

    Article  Google Scholar 

  • Butler, R. (2007): Saddlepoint Approximations with Applications. Cambridge University Press.

    Google Scholar 

  • Chan, N.H. and Wei, C.Z. (1988): Limiting distributions of least squares estimates of unstable autoregressive processes. Annals of Statistics 16, 367–401.

    Article  MATH  MathSciNet  Google Scholar 

  • Cox, J., Ingersoll, J. and Ross, S. (1985): A theory of the term structure of interest rates. Econometrica 53, 385–407.

    Article  MathSciNet  Google Scholar 

  • Dai, Q. and Singleton, K. (2003): Term Structure Dynamics in Theory and Reality. Review of Financial Studies 16, 631–678.

    Article  Google Scholar 

  • Daniels, H.E. (1954): Saddlepoint approximations in statistics. Annals of Mathematical Statistics 25, 631–650.

    Article  MATH  MathSciNet  Google Scholar 

  • Durham, G. and Gallant, A.R. (2002): Numerical Techniques for Maximum Likelihood Estimation of Continuous-time Diffusion Processes. Journal of Business and Economic Statistics 20, 297–316.

    Article  MathSciNet  Google Scholar 

  • Duffie, D. and Singleton, K.J. (1993): Simulated Moments Estimation of Markov Models of Asset Prices. Econometrica 61, 929–952.

    Article  MATH  MathSciNet  Google Scholar 

  • Elerian, O. (1998): A Note on the Existence of a Closed-form Conditional Transition Density for the Milstein Scheme. Economics discussion paper 1998–W18, Nuffield College, Oxford.

    Google Scholar 

  • Elerian, O., Chib, S. and Shephard, N. (2001): Likelihood inference for discretely observed non-linear diffusions. Econometrica 69, 959–993.

    Article  MATH  MathSciNet  Google Scholar 

  • Feller, W. (1951): Two Singular Diffusion Problems. Annals of Mathematics 54, 173–182.

    Article  MathSciNet  Google Scholar 

  • Field, C. and Ronchetti, E. (1990): Small Sample Asymptotics. IMS Lecture Notes 13. Hayward, California.

    MATH  Google Scholar 

  • Gallant, A.R. and Tauchen, G. (1996): Which moments to match? Econometric Theory 12, 657–681.

    Article  MathSciNet  Google Scholar 

  • Ghysels, E., Harvey, A.C. and Renault, E. (1996): Stochastic volatility. In: Rao, C.R. and Maddala, G.S (Eds.): Statistical Models in Finance, 119–191. North-Holland, Amsterdam.

    Google Scholar 

  • Gouriéroux, C., Monfort, A. and Renault, E. (1993): Indirect Inference. Journal of Applied Econometrics 8, 85–118.

    Article  Google Scholar 

  • Gouriéroux, C., Phillips, P.C.B. and Yu, J. (2007): Indirect inference for dynamic panel models. Journal of Econometrics forthcoming.

    Google Scholar 

  • Gouriéroux, C., Renault, E. and Touzi, N. (2000): Calibration by simulation for small sample bias correction. In: Mariano, R.S., Schuermann, T. and Weeks, M. (Eds.): Simulation-Based Inference in Econometrics: Methods and Applications, 328-358. Cambridge University Press.

    Google Scholar 

  • Hall, P. and Heyde, C.C. (1980): Martingale Limit Theory and Its Application. Academic Press.

    Google Scholar 

  • Hansen, L.P. and Sargent, T.J. (1983): The dimensionality of the aliasing problem in models with rational spectral densities. Econometrica 51, 377–388.

    Article  MATH  MathSciNet  Google Scholar 

  • Holly, A. and Phillips, P.C.B. (1979): An saddlepoint approximation to the distribution to the k-class estimator in a simultaneous system. Econometrica 47, 1527–1548.

    Article  MATH  MathSciNet  Google Scholar 

  • Houthakker, H.S. and Taylor, L.D. (1966): Consumer demand in the United States 1929-1970, Analysis and Projections. Cambridge: Harvard University Press.

    Google Scholar 

  • Jacod, J. (1994): Limit of random measures associated with the increments of a Brownian semiartingal. Working paper, Laboratoire de Probabilities, Universite Pierre et Marie Curie, Paris.

    Google Scholar 

  • Karatzas, I and Shreve, S.E. (1991): Brownian Motion and Stochastic Calculus. Springer, New York.

    MATH  Google Scholar 

  • Kessler, M. (1997): Estimation of an ergordic diffusion from discrete observations. Scandinavian Journal of Statistics 24, 211–229.

    Article  MATH  MathSciNet  Google Scholar 

  • Kloeden, P.E. and Platen, E. (1999): Numerical Solution of Stochastic Differential Equations. Springer, New York.

    Google Scholar 

  • Lánska, V. (1979): Minimum contrast estimation in diffusion processes. Journal of Applied Probability 16, 65–75.

    Article  MATH  MathSciNet  Google Scholar 

  • Liptser, R.S. and Shiryaev, A.N. (2000): Statistics of Random Processes. Springer, New York.

    Google Scholar 

  • Lo, A.W. (1988): Maximum Likelihood Estimation of Generalized Itô Processes with Discretely Sampled Data. Econometric Theory 4, 231–247.

    MathSciNet  Google Scholar 

  • MacKinnon, J.G. and Smith, A.A. (1998): Approximate bias correction in econometrics. Journal of Economterics 85, 205–230.

    Article  MATH  MathSciNet  Google Scholar 

  • McCullagh, P. (1987): Tensor Methods in Statistics. London: Chapman and Hall.

    MATH  Google Scholar 

  • Merton, R.C. (1980): On Estimating the Expected Return on the Market: An Exploratory Investigation. Journal of Financial Economics 8, 323–361.

    Article  Google Scholar 

  • Merton, R.C. (1990): Continuous-time Finance. Blackwell, Massachusetts.

    Google Scholar 

  • Milstein, G.N. (1978): A Method of Second-Order Accuracy Integration of Stochastic Differential Equations. Theory of Probability and its Applications 23, 396–401.

    Article  Google Scholar 

  • Monfort, A. (1996): A reappraisal of misspecified econometric models. Econometric Theory 12, 597–619.

    Article  MathSciNet  Google Scholar 

  • Nowman, K.B. (1997): Gaussian Estimation of Single-factor Continuous Time Models of the Term Structure of Interest Rates. Journal of Finance 52, 1695–1703.

    Article  Google Scholar 

  • Pedersen, A. (1995): A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observation. Scandinavian Journal of Statistics 22, 55–71.

    MATH  Google Scholar 

  • Phillips, P.C.B. (1972): The Structural Estimation of a Stochastic Differential Equation System. Econometrica 40, 1021–1041.

    Article  MATH  Google Scholar 

  • Phillips, P.C.B. (1973): The problem of identification in finite parameter continuous time models. Journal of Econometrics 1, 351–362.

    Article  MATH  Google Scholar 

  • Phillips, P.C.B. (1974): The Estimation of Some Continuous Time Models. Econometrica 42, 803–823.

    Article  MATH  MathSciNet  Google Scholar 

  • Phillips, P.C.B. (1978): Edgeworth and saddlepoint approximations in a first order non-circular autoregression. Biometrika 65, 91–98.

    Article  MATH  Google Scholar 

  • Phillips, P.C.B. (1980): The exact finite sample density of instrumental variable estimators in an equation with n+1 endogenous variables. Econometrica 48, 861–878.

    Article  MATH  MathSciNet  Google Scholar 

  • Phillips, P.C.B. (1984): Marginal densities of instrumental variable estimators in the general single equation case. Advances in Econometrics 2, 1–24.

    Google Scholar 

  • Phillips, P.C.B. (1987): Time series regression with a unit root. Econometrica 55, 277–301.

    Article  MATH  MathSciNet  Google Scholar 

  • Phillips, P.C.B. (1991): Error correction and long run equilibrium in continuous time. Econometrica 59, 967–980.

    Article  MATH  MathSciNet  Google Scholar 

  • Phillips, P.C.B. and Magdalinos, T. (2007): Limit theory for moderate deviations from unity. Journal of Econometrics 136, 115–130.

    Article  MathSciNet  Google Scholar 

  • Phillips, P.C.B. and Yu, J. (2005a): Jackknifing bond option prices. Review of Financial Studies 18, 707–742.

    Article  Google Scholar 

  • Phillips, P.C.B. and Yu, J. (2005b): Comments: A selective overview of nonparametric methods in financial econometrics. Statistical Science 20, 338–343.

    Article  MATH  Google Scholar 

  • Phillips, P.C.B. and Yu, J. (2007): A Two-Stage Realized Volatility Approach to Estimation of Diffusion Processes with Discrete Data. Journal of Econometrics forthcoming.

    Google Scholar 

  • Quenouille, M. H. (1956): Notes on Bias in Estimation. Biometrika 43, 353–360.

    MATH  MathSciNet  Google Scholar 

  • Reid, N. (1988): Saddlepoint methods and statistical inference. Statistical Science 3, 213–238.

    Article  MATH  MathSciNet  Google Scholar 

  • Sargan, J.D. (1974) Some discrete approximations to continuous time stochastic models. Journal of the Royal Statistical Society, Series B 36, 74–90.

    MATH  MathSciNet  Google Scholar 

  • Shoji, I. and Ozaki, T. (1997): Comparative study of estimation methods for continuous time stochastic processes. Journal of Time Series Analysis 18, 485–506.

    Article  MATH  MathSciNet  Google Scholar 

  • Shoji, I. and Ozaki, T. (1998): Estimation for nonlinear stochastic differential equations by a local linearization method. Stochastic Analysis and Applications 16, 733–752.

    Article  MATH  MathSciNet  Google Scholar 

  • Smith, A.A. (1993): Estimating nonlinear time-series models using simulated vector autoregressions. Journal of Applied Econometrics 8, 63–84.

    Article  Google Scholar 

  • Shephard, N. (2005): Stochastic Volatility: Selected Readings. Oxford University Press, Oxford.

    MATH  Google Scholar 

  • Tierney, L. and Kadane, J. (1986): Accurate approximations for posterior moments and marginal densities. Journal of the American Statistical Association 81, 82–87.

    Article  MATH  MathSciNet  Google Scholar 

  • Tse, Y., Zhang, X. and Yu, J. (2004): Estimation of Hyperbolic Diffusion using MCMC Method. Quantitative Finance 4, 158–169.

    Article  MathSciNet  Google Scholar 

  • Vasicek, O. (1977): An equilibrium characterization of the term structure. Journal of Financial Economics 5, 177–186.

    Article  Google Scholar 

  • Yu, J. (2007): Biases in the Estimation of Mean Reversion Parameter in a Simple Continuous Time Model. Working Paper, Singapore Management University.

    Google Scholar 

  • Yu, J. and Phillips, P.C.B. (2001): A Gaussion Approach for Estimating Continuous Time Models of Short Term Interest Rates. The Econometrics Journal 4, 211–225.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Phillips, P.C., Yu, J. (2009). Maximum Likelihood and Gaussian Estimation of Continuous Time Models in Finance. In: Mikosch, T., Kreiß, JP., Davis, R., Andersen, T. (eds) Handbook of Financial Time Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71297-8_22

Download citation

Publish with us

Policies and ethics