Some Issues in Relativistic Spacetime Theories

  • Waldyr Alves RodriguesJr
  • Edmundo Capelas de Oliveira
Part of the Lecture Notes in Physics book series (LNP, volume 722)


Reference Frame Minkowski Spacetime Expansion Ratio World Line Lorentzian Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abrams, L. S., Alternative Space-Time for the Point Mass, Phys. Rev. D 20, 2474-2479 (1979). [gr-qc/0201044]ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Aharonov, Y., and Vaidman, L., Sending Signals to Space-like Separated Regions, Z. Naturforsch 56a, 20-26 (2001). [quantum-ph/0102083]Google Scholar
  3. 3.
    Allais, M., L’ Anisotropy de l’ Espace, Editions Clément Juglar, Paris, 1997.Google Scholar
  4. 4.
    Allan, D. W., Davis, D. D., Weiss, M., et al, Accuracy of International Time and Frequency Comparisons Via Global Positioning System Satellites in Common-View IEEE Trans. Inst. and Meas., IM-32, 118-125 (1985).CrossRefGoogle Scholar
  5. 5.
    Alley, C., Proper Time Experiments in Gravitational Fields with Atomic Clocks, Aircraft, and Laser Light Pulses, in Pierre Meystre and Marlan O. Scully (eds.) Quantum Optics, Experimental Gravity, and Measurement Theory, Proceedings Conf. Bad Windsheim, Plenum Press New York, ISBN 0-306-41354-X 1981.Google Scholar
  6. 6.
    Amelino-Camelia, G., and Piran, T.,Planck-Scale Deformation of Lorentz Symmetry as a Solution of the UHECR and the Tev- γ Paradoxes, Phys. Rev. D 64, 036005 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    Amelino-Camelia, G., Testable Scenario for Relativity with Minimum Length, Phys. Lett. B 510, 255-263 (2001).zbMATHADSCrossRefGoogle Scholar
  8. 8.
    Amelino Camelia, G., Double Special Relativity, Nature 418, 34-35 (2002).ADSCrossRefGoogle Scholar
  9. 9.
    Anastasovski, P. K. et al (AIAS group), Self Inconsistences of the U(1) Theory of Electrodynamics Michelson Interferometry, Found. Phys. Lett. 12, 579-584 (1999).CrossRefGoogle Scholar
  10. 10.
    Apsel, D., Gravitation and Electromagnetism, Gen. Rel. Grav. 10, 297-306 (1979).ADSCrossRefGoogle Scholar
  11. 11.
    Ashby, N., and Allan, D. W., Coordinate Time On and Near the Earth, Phys. Rev. Lett. 53, 1858-1858 (1984).ADSCrossRefGoogle Scholar
  12. 12.
    Aubin, T., A Course in Differential Geometry (Graduate Studies in Mathematics, vol 27), American Mathematical Society, Providence, 2001.Google Scholar
  13. 13.
    Bailey, J. et al, Measurements of Relativistic Time Dilatation for Positive and Negative Muons in a Circular Orbit, Nature 268, 301-305 (1977).ADSCrossRefGoogle Scholar
  14. 14.
    Barrett, T. W., Maxwell Theory Extended. Part 1. Empirical Reasons for Questioning the Completeness of Maxwell’s Theory- Effects Demonstrating the Physical Significance of the A potentials. Ann. Fond. L. de Broglie 15, 143-183 (1989).Google Scholar
  15. 15.
    Barrett, T. W., Maxwell Theory Extended. Part 2. Theoretical and Pragmatic Reasons for Questioning the Completeness of Maxwell’s Theory, Ann. Fond. L. de Broglie 15, 253-283 (1990).Google Scholar
  16. 16.
    Barrett, T. W., On the Distinction Between Fields and their Metric: The Fundamental Difference Between Specifications Concerning Medium- Independent Fields and Constitutive Specifications Concerning Relations of the Medium in Which they Exist, Ann. Fond. L. de Broglie 14, 37- 75 (1989).Google Scholar
  17. 17.
    Barrett, T. W., in Lakhatia, A. (ed.), Essays of the Formal Aspects of Electromagnetic Theory, World Scientific, Singapore Pub. Co., pp. 6- 86, 1993.Google Scholar
  18. 18.
    Barrett, T. W., in T.W. Barrett and D. M. Grimes (eds.), Advanced Electromagnetism, , Singapore Pub. Co., pp. 278-313, 1995.Google Scholar
  19. 19.
    Bertotti, B. and Grishchuk, L. P., The Strong Equivalence Principle, Class. Quantum Gravity 7, 1733-1745 (1990).ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Bishop, R. L. and Goldberg, S. I., Tensor Analysis on Manifolds, Dover, New York, 1980.Google Scholar
  21. 21.
    Bjorken, J. D., A Dynamical Origin for the Electromagnetic Field, Ann. Phys. (New York) 24, 174-187 (1963).ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Brillet, A. and Hall J.L., Improved Laser Test of the Isotropy of Space, Phys. Rev. Lett. 42, 549-552 (1979).ADSCrossRefGoogle Scholar
  23. 23.
    Bourbaki, N., Theorie des Ensembles, Hermann, Paris, 1957.zbMATHGoogle Scholar
  24. 24.
    Caban, P. and Rembieliński, J., Lorentz Covaraint Quantum Mechanics and Preferred Frame, Phys. Rev. A 59, 4187-4196 (1999).ADSCrossRefGoogle Scholar
  25. 25.
    Cahill, R. T., and Kitto, K., Michelson-Morley Experiments Revisited and the Cosmic Background Radiation Preferred Frame. [physics/0205065]Google Scholar
  26. 26.
    Cahill, R. T., A New Light-Speed Anisotropy Experiment: Absolute Motion and Gravitational Waves Detected, Progress in Physics 4, 73-92 (2006). [physics/0610076]MathSciNetGoogle Scholar
  27. 27.
    Cahill, R. T., and Kitto, K. , Re-Analysis of Michelson-Morley Experiments Reveals Agreement with COBE Cosmic Background Radiation Preferred Frame so Impacting on Interpretation of General Relativity, Apeiron 10, 104-117 (2003).Google Scholar
  28. 28.
    Chang, T., A New Approach to the Problem of Superluminous Velocity, J. Phys. A: Math. Gen. 12, L203-L204 (1979).ADSCrossRefGoogle Scholar
  29. 29.
    Chiao, R. Y., Superluminal (but causal) Propagation of Wave Packets in Transparent Media with Inverted Populations, Phys. Rev. A 48, R34-R37 (1993).ADSCrossRefGoogle Scholar
  30. 30.
    Chiu, C. B., Hsu, J. P. and Sherry, T. N., Predicitions of Variations of Speed of Light Measured by Stable Clocks, Phys. Rev. D 16, 2420-2423 (1977).ADSCrossRefGoogle Scholar
  31. 31.
    Choquet-Bruhat, Y., DeWitt-Morette, Analysis, Manifolds and Physics.Part II: 92 Applications, North Holland Publ. Co., Amsterdam, 1989.zbMATHGoogle Scholar
  32. 32.
    Choquet-Bruhat, Y., DeWitt-Morette, C. and Dillard-Bleick, M., Analysis, Manifolds and Physics (revisited edition), North Holland Publ. Co., Amsterdam, 1982.zbMATHGoogle Scholar
  33. 33.
    Ciufolini, I. and Wheeler, J. A., Gravitation and Inertia, Princeton Univ. Press, Princeton, 1995.zbMATHGoogle Scholar
  34. 34.
    Concklin, E. K., Velocity of the Earth With Respect to the Cosmic Background Radiation, Nature 222, 971-972 (1969).ADSCrossRefGoogle Scholar
  35. 35.
    Consoli, M. and Constanzo, E., From Classical to Modern Ether-Drift Experiments: The Narrow Window for a Preferred Frame, Phys. Lett. A 333, 355-363 (2004).ADSCrossRefzbMATHGoogle Scholar
  36. 36.
    Consoli, M., and Constanzo, E., The Motion of the Solar System and the Michelson-Morley Experiment. [physics/0311576]Google Scholar
  37. 37.
    Consoli, M., Relativistic Analysis of Michelson-Morley Experiments and Miller’s Cosmic Solution for the Earth’s Motion. [physics/0310053]Google Scholar
  38. 38.
    Croca, J. and Selleri, F., Is the One Way Velocity of Light Measurable?, N. Cimento B 114, 447-457 (1999).ADSGoogle Scholar
  39. 39.
    Droste, J., The Field of a Single Centre in Einstein’s Theory of Gravitation, and the Motion of a Particle in that Field, Proc. K. Ned. Akad. Wet. 19, 197-214 (1917). []Google Scholar
  40. 40.
    Earman, J., World Enough and Spacetime, The MIT Press, Cambridge, MA, 1989.Google Scholar
  41. 41.
    Einstein, A., Zur Elektrodynamic Begwegeter Körper, Ann. Phys. 17, 891-921 (1905).CrossRefGoogle Scholar
  42. 42.
    Enders, A. and Nimtz, G., On Superluminal Barrier Traversal, J. Phys. France I 2, 1693–1698 (1992).CrossRefADSGoogle Scholar
  43. 43.
    Enders, A. and Nimtz, G., Photonic-tunneling Experiments, Phys. Rev. B 47, 9605–9609 (1993).ADSCrossRefGoogle Scholar
  44. 44.
    Enders, A. and Nimtz, G., Evanescent-Mode Propagation and Quantum Tunneling, Phys. Rev. E 48, 632–634 (1993).ADSCrossRefGoogle Scholar
  45. 45.
    Essen, L., Relativity, Electron. Wireless World 94, 460-460 (1998).Google Scholar
  46. 46.
    Feynman, R. P., Morinigo, F. B. and Wagner, W. G., (edited by Hatfield, B.), Feynman Lectures on Gravitation, Addison-Wesley Publ. Co., Reading, MA, 1995.Google Scholar
  47. 47.
    Friedman, M. Foundations of Spacetime Theories, Princeton Univ. Press, Princeton, 1983.Google Scholar
  48. 48.
    Friedlander, F. G., The Wave Equation on a Curved Space-Time, Cambridge Univ. Press, Cambridge, 1975.zbMATHGoogle Scholar
  49. 49.
    Fock, V., The Theory of Space, Time and Gravitation (2nd revised edition), Pergamon Press, Oxford, 1964.Google Scholar
  50. 50.
    Gabriel, M. D. and Haugan, M. P., Testing the Einstein Equivalence Principle-Atomic Clocks and Local Lorentz Invariance, Phys. Rev. D 141, 2943-2955 (1990).ADSCrossRefGoogle Scholar
  51. 51.
    Giakos, G. C. and Ishii, T. K., Anomalous Microwave Propagation in Open Space, Microwave and Opt. Tech. Lett. 4, 79–81 (1991).ADSGoogle Scholar
  52. 52.
    Goy, F. and Selleri, F., Time in a Rotaing Platform, Found. Phys. Lett. 10, 17-29 (1997).MathSciNetGoogle Scholar
  53. 53.
    Hardy, L., Quantum Mechanics, Local Realistic Theories, and Lorentz-Invariant Realistic Theories, Phys.Rev. Lett. 68, 2981 (1992).zbMATHADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    Hawking, S. W. and Ellis, G. F. .R, The Large Scale Structure of Spacetime, Cambridge University Press, Cambridge, 1973.Google Scholar
  55. 55.
    Heitmann, W., and Nimtz, G., On Causality Proofs of Superluminal Barrier Traversal of Frequency Band Limited Wave Packets, Phys. Lett. A 196, 154–158 (1994).ADSGoogle Scholar
  56. 56.
    Hilbert, D., Die Grundlagen der Physik, Math. Ann. 92, 1-32, (1924).MathSciNetCrossRefGoogle Scholar
  57. 57.
    Hillion, P., Electromagnetic Pulse Propagation in Dispersive Media, Prog. Electr. Research, PIER35, 299-314 (2002).CrossRefGoogle Scholar
  58. 58.
    Ishii, T. K. and Giakos, G. C., Transmit Radio Waves Faster than Light, Microwaves & RF, 114–119, August (1991).Google Scholar
  59. 59.
    Ishii, T. K. and Giakos, G. C., Rapid Pulse Microwave Propagation, IEEE Microwave and Guided Letters 1, 374-375 (1991).ADSCrossRefGoogle Scholar
  60. 60.
    Ives, H. E, Theory of the Double Fizeau Toothed Whell, J. Opt. Soc. Am. 29, 472-478 (1939).ADSGoogle Scholar
  61. 61.
    Jackson, F. and Pargetter, R., Relative Simultaneity in Special Relativity, Philos. Sci. 44, 464- 474 (1997).CrossRefGoogle Scholar
  62. 62.
    Kelly, A. G., Hafele & Keating: Did They Prove Anything?, Phys. Essays 13, 616-621 (2000).CrossRefADSGoogle Scholar
  63. 63.
    Kilpatrick, J. F., Measures of the Velocity of Pulses on Wires, Toth-Maatian Rev. 9, 4541-4546 (1990).Google Scholar
  64. 64.
    Klauber, R. D., Analysis of the Anomalous Brillet and Hall Experimental Result, Found.Phys.Lett. 17, 125-147 (2004).zbMATHCrossRefGoogle Scholar
  65. 65.
    Kolen, P. and Torr, D. G., An Experiment to Measure the One-Way Velocity of Propagation of Electromagnetic Radiation, Found. Phys. 12, 401-411 (1982).CrossRefADSGoogle Scholar
  66. 66.
    Kostelecky, V. A., CPT and Lorentz Symmetry, World Scientific Publ. Co., Singapore, 1999.Google Scholar
  67. 67.
    Kostelecky, V. A., CPT and Lorentz SymmetryII, World Scientific Publ. Co., Singapore, 2002.Google Scholar
  68. 68.
    Kostelecky, V. A., Background Information on Lorentz -CPT Violation, Scholar
  69. 69.
    Landau, L. D. and Lifshitz, E. M., The Classical Theory of Fields, fourth revised English edition, Pergamon Press, New York, 1975.Google Scholar
  70. 70.
    Leavens, C. R., Times of Arrival in Quantum and Bohmian Mechanics, Phys. Rev. A 59, 840-847 (1998).ADSMathSciNetCrossRefGoogle Scholar
  71. 71.
    Logunov, A. A., Mestvirishvili, M. A., The Relativistic Theory of Gravitation, Mir Publ., Moscow, 1989.zbMATHGoogle Scholar
  72. 72.
    Logunov, A. A., Relativistic Theory of Gravity, Nova Science Publ., New York, 1999.Google Scholar
  73. 73.
    Logunov, A. A., On the Article by Henri Poincaré “ On the Dynamics of the Electron”, Hadronic J. 19, 109-183 (1996).zbMATHMathSciNetGoogle Scholar
  74. 74.
    Logunov, A. A., Henri Poincar’e and Relativity Theory, Nauka, 2005. arXiv:physcis/0408077.Google Scholar
  75. 75.
    Low, F. E., Comments on Apparent Superluminal Propagation, Ann. der Physik 7, 660–661, (1998).ADSCrossRefGoogle Scholar
  76. 76.
    Maciel, A. K. A., and Tiomno, J., On Experiments to Detect Small Violations of Relativity Theory, Phys. Rev. Lett. 55, 143-146 (1985).ADSCrossRefGoogle Scholar
  77. 77.
    Magueijo, J. and Smolin, L., Lorentz Invariance With an Invariant Energy Scale, Phys. Rev. Lett. 88, 190403 (2002).ADSCrossRefGoogle Scholar
  78. 78.
    Mansouri, R. and Sexl, R. V., Test Theory of Special Relativity 1. Simultaneity and Clock Synchronization, Gen. Rel. Grav. 8, 497-513 (1977).ADSCrossRefGoogle Scholar
  79. 79.
    Mansouri, R. and Sexl, R. V., Test Theory of Special Relativity 2. First Order Tests, Gen. Rel. Grav. 8, 515-534 (1977).ADSCrossRefGoogle Scholar
  80. 80.
    Marinov, S., Velocity of Light is Direction Dependent, Czech. J. Phys. B 24, 965-970 (1974).ADSCrossRefGoogle Scholar
  81. 81.
    Marinov, S., Measurement of the Laboratory’s Absolute Velocity, Gen. Rel. Grav. 12, 57-66 (1974).ADSCrossRefGoogle Scholar
  82. 82.
    Matolcsi, T., Rodrigues Jr., W. A., Spacetime Model with Superluminal Phenomena, Algebras, Groups and Geometries 14, 1–16 (1997).zbMATHMathSciNetGoogle Scholar
  83. 83.
    Misner, C. M., Thorne, K. S. and Wheeler,J. A., Gravitation, W.H. Freeman and Co. San Francesco, 1973.Google Scholar
  84. 84.
    Miller, D. C., The Ether Drift Experiment and the Determination of the Absolute Motion of the Earth, Rev. Mod. Phys. 5, 203-242 (1933).ADSCrossRefGoogle Scholar
  85. 85.
    Miller, A. I., Albert Einstein’s Special Theory of Relativity, Addison-Wesley Publ. Co., Inc., Reading, MA, 1981.Google Scholar
  86. 86.
    Milnes, H. W., Faster than Light? Radio Electronics 54, 55- 64(1983).Google Scholar
  87. 87.
    Milnes, H.W., On Electrical Signals Exceeding the Velocity of Light, Tooth-Maatian Rev. 2, 870-890 (1984).Google Scholar
  88. 88.
    Mugnai, D., Ranfagni, A. and Ruggieri, R., Observation of Superluminal Behavior in Wave Propagation, Phys. Rev. Lett. 84, 4830-4834 (2000).ADSCrossRefGoogle Scholar
  89. 89.
    Møller, C., The Theory of Relativity, 2nd edition, Oxford University Press, 1972.Google Scholar
  90. 90.
    Møller, C., On the Localization of the Energy of a Physical System in the General Theory of Relativity Ann. Phys. 4, 347-461 (1958).zbMATHADSCrossRefGoogle Scholar
  91. 91.
    Morse, P. M., Feshback, H., Methods of Theoretical Physics, Part 1, 837-841, McGraw-Hill, New York, 1953.Google Scholar
  92. 92.
    Nakahara, M., Geometry, Topology and Physics, Institute of Physics Publ., Bristol and Philadelphia, 1990.zbMATHGoogle Scholar
  93. 93.
    Nimtz, G., New Knowledge of Tunneling from Photonic Experiments, in D. Mugnai, A. Ranfagni and L. S. Schulman (eds.), Proc. of the Adriatico Research Conference: Tunneling and its Applications (30 July-02 August 1996), 223–237, World Sci. Publ. Co., 1997.Google Scholar
  94. 94.
    Nimtz, G., Spieker, H., and Brodowski, H. M., Tunneling with dissipation, J. Phys. I (France) 4, 1379-1382 (1994).CrossRefGoogle Scholar
  95. 95.
    Nimtz, G., Enders, A., and Spieker, H., Photonic Tunneling Times, J. Phys. I (France) 4, 565–570 (1994).CrossRefGoogle Scholar
  96. 96.
    Nodland B., and Ralston J. P., Indication of Anisotropy in Electromagnetic Propagation over Cosmological Distances, Phys. Rev. Lett. 78, 3043-3046 (1997).[astro-ph/9704196]ADSCrossRefGoogle Scholar
  97. 97.
    Norton, J. in D. Howard and J. Stachel (eds.), Einstein and the History of General Relativity, Birkhauser, Boston, 1989.Google Scholar
  98. 98.
    Oliveira, E. Capelas de, and Rodrigues, W. A. Jr., Subluminal, Luminal and Superluminal Wave Motion (Book in preparation 2007).Google Scholar
  99. 99.
    Pappas, P. T., and Obolensky A. G., Thirth Six Nanoseconds Faster Than Light, Electronics and Wireless World(December), 1162-1165 (1988).Google Scholar
  100. 100.
    Percival, I.C., Quantum Transfer Functions, Weak Nonlocality and Relativity, Phys. Lett A 244, 495-501 (1998).ADSCrossRefGoogle Scholar
  101. 101.
    Percival, I.C., Cosmic Quantum Measurements, Proc. R. Soc. London ser. A 456, 25 (2000).zbMATHADSMathSciNetGoogle Scholar
  102. 102.
    Prugrovecki, E., Quantum Geometry: A Framework Quantum General Relativity, Kluwer Acad. Pub., Dordrecht, 1992.Google Scholar
  103. 103.
    Post, J., E., Quantum Reprogramming, Kluwer Acad. Publ., Dordrecht, 1995.Google Scholar
  104. 104.
    Post, E. J., Sagnac Effect, Rev. Mod. Phys. 39, 475-& (1967).ADSCrossRefGoogle Scholar
  105. 105.
    Poincaré, H., Mesure du Temps, Rev. de M’etaphysique et de Morale, VI, 1-13 (1898).Google Scholar
  106. 106.
    Poincaré, H., Sur la Dynamique de L’électron, Rend. C. Circ. Mat. Palermo 21, 129–175 (1906).zbMATHGoogle Scholar
  107. 107.
    Poincaré, H., Sur la Dinamique de L’ électron, Comp. Rendus Acad. des Sci. Paris, 140, 1504-1508 (1905).zbMATHGoogle Scholar
  108. 108.
    Ranfagni, A., and Mugnai, D., Anomalous Pulse Delay in Microwave Propagation: A case for Superluminal Behavior, Phys. Rev. E 54, 5692–5696 (1996).ADSCrossRefGoogle Scholar
  109. 109.
    Ranfagni, A., Mugnai, D., D. Fabeni, P., and Pazzi, G. P., Delay-time Measurements in Narrow Waveguides as a Test of Tunneling, Appl. Phys. Lett. 58, 774–776 (1991).ADSCrossRefGoogle Scholar
  110. 110.
    Ranfagni, A., Fabeni, P., and Mugnai, D., Anomalous Pulse Delay in Microwave Propagation: A Plausible Connection to Tunneling Time, Phys. Rev. E 48 , 1453–1460 (1993).ADSCrossRefGoogle Scholar
  111. 111.
    Reichenbach, H., The Philosophy of Space and Time, Dover, New York, 1958.zbMATHGoogle Scholar
  112. 112.
    Rembielinski, J., Quantization of the Tachyonic Field and the Preferred Frame, (1995). [hep-ph/9509219]Google Scholar
  113. 113.
    Rembielinski, J., Tachyons and Preferred Frames, Int. J. Mod. Phys. A 12, 1677–1709 (1997).zbMATHADSMathSciNetCrossRefGoogle Scholar
  114. 114.
    Rembielinski, J., Superluminal Phenomena and the Quantum Preferred Frame, (2000). [quant-ph/0010026]Google Scholar
  115. 115.
    Rembielinski, J., and Smolinski, K. A., Einstein-Podolsky-Rosen Correlations of Spin Measurements in Two Moving Inertial Frames, Phys. Rev. A 66, 0152114 (2002). [quant-ph/0204155]ADSCrossRefGoogle Scholar
  116. 116.
    Rembielinski, J., and Smolinski, K. A., Unphysical Predictions of Some Doubly Special Relativity Theories, (2002). [hep-th/0207031]Google Scholar
  117. 117.
    Rickles, D., Space-Time, Change, and Identity: Classical and Quantum Gravity in Philosophical Focus. PhD Thesis – Available from: phldpr/thesis.pdf.Google Scholar
  118. 118.
    Robertson, W. M., Speed of Light Broken with Basic Laboratory Equipment, http://physics.mtsu./htm, New Scientist 16/09 (2002).Google Scholar
  119. 119.
    Roberts, T., What is the experimental basis of Special Relativity?, Scholar
  120. 120.
    Roberts, T. J., An Explanation of Dayton Miller’s Anomalous “Ether Drift” Result. [physics/0608238]Google Scholar
  121. 121.
    Rodrigues, W.A. Jr., and Rosa, M. A. F., The Meaning of Time in Relativity and Einstein’s Later View of the Twin Paradox, Found. Phys. 19, 705–724 (1989).MathSciNetCrossRefADSGoogle Scholar
  122. 122.
    Rodrigues, W.A. Jr., and Tiomno, J., On Experiments to Detect Possible Failures of Relativity Theory, Found. Phys. 15, 995-961 (1985).MathSciNetCrossRefGoogle Scholar
  123. 123.
    Rodrigues, W.A. Jr., Scanavini, M. E. F., Alcantara, L. P., Formal Structures, The Concepts of Covariance, Invariance, Equivalent Reference Systems, and the Principle of Relativity, Found. Phys. Lett. 3, 59–79 (1990).MathSciNetGoogle Scholar
  124. 124.
    Rodrigues, W.A. Jr., and Oliveira, E. Capelas de, A Comment on the Twin Paradox and the Hafele-Keating Experiment, Phys. Lett. A 140, 479-484 (1989).ADSMathSciNetCrossRefGoogle Scholar
  125. 125.
    Rodrigues, W. A. Jr., and Sharif, M., Rotating Frames in RT: Sagnac’s Effect in SRT and other Related Issues, Found. Phys. 31, 1767-1784 (2001).MathSciNetCrossRefGoogle Scholar
  126. 126.
    Rodrigues, W. A. Jr., and Sharif, M., Equivalence Principle and the Principle of Local Lorentz Invariance, Found. Phys. 31, 1785-1806 (2001). Corrigenda: Found. Phys. 32, 811-812 (2002).Google Scholar
  127. 127.
    Rosen, N., Inertial Systems in an Expanding Universe, Proc. Israel Acad. Sci. and Hum. (Section of Sciencesrm ) 12 (1968).Google Scholar
  128. 128.
    Rovelli, C., Loop Gravity, Cambridge University Press, Cambridge, 2004. rovelli/book.pdf.Google Scholar
  129. 129.
    Saari, P., and Reivelt, K., Evidence of X -Shaped Propagation-Invariant Localized Light Waves, Phys. Rev. Lett. 21, 4135-4138 (1997).ADSCrossRefGoogle Scholar
  130. 130.
    Sachs, R. K., and Wu, H., General Relativity for Mathematicians, Springer-Verlag, New York, 1977.zbMATHGoogle Scholar
  131. 131.
    Sagnac, G., The Lumerifeous Ether Demonstrated by Effect of the Relative Motion of the Ether in an Interferometer in Uniform Rotation, Comptes Rendus de l’ Acad. des Sci. 157, 708-710; 1410-1413 (1913).Google Scholar
  132. 132.
    Schwarzschild, K., On the Gravitational Field of a Mass Point According to Einstein’s Theory, Sitzungsber Preuss. Akad. Wiss., Phys. Math. K1, 189-196 (1917). []Google Scholar
  133. 133.
    Schweber, S. S., An Introduction to Relativistic Quantum Field Theory, Harper&How, New York, 1964.Google Scholar
  134. 134.
    Schwinger, J., Particles, Sources and Fields, vol. 1, Addison-Wesley Publ. Co., Reading, MA, 1970.Google Scholar
  135. 135.
    Selleri, F., Non Invariant One Way Velocity of Light, Found. Phys. 26, 641-664 (1996).MathSciNetCrossRefADSGoogle Scholar
  136. 136.
    Selleri, F, Non Invariant One Way Speed of Light and Locally Equivalent Reference Frames, Found, Phys. Lett. 10, 73-83 (1997).MathSciNetGoogle Scholar
  137. 137.
    Shankland, R. S., McCuskey S. W., Leone, F.C. and Kuerti, G., New Analysis of the Interferometric Observations of Dayton C. Miller, Rev. Mod. Phys. 27, 167-178 (1955).ADSCrossRefGoogle Scholar
  138. 138.
    Stavroulakis, N., Mathématique et Trous Noirs, Gazette des Mathématiques 31, 119 -132 (1986).Google Scholar
  139. 139.
    Stefanov A., Zbinden, H., Gisin, N. and Suarez, A., Quantum Correlations with Spacelike Separated Beams Splitters in Motion: Experimental Test of Multisimultaneity, Phys. Rev. Lett. 88 (12), 2002.Google Scholar
  140. 140.
    Steinberg, A. M., Kwiat, P. G., and Chiao, R. Y., Measurement of the Single-Photon Tunneling Time, Phys. Rev. Lett. 71, 708–711 (1993).ADSCrossRefGoogle Scholar
  141. 141.
    Steinberg, A. M., and Chiao, R. Y., Dispersionless, Highly Superluminal Propagation in a Medium with a Gain Doublet, Phys. Rev. A 49, 2071–2075 (1994).ADSCrossRefGoogle Scholar
  142. 142.
    Suarez, A. and Scarani, V., Does Entanglement Depend on the Timing of the Impacts at the Beam-Splitters?, Phys. Lett. A 232, 9-14 (1997).ADSMathSciNetCrossRefGoogle Scholar
  143. 143.
    Synge, J. L., Relativity: The General Theory, North Holland, Amsterdam, 1960.zbMATHGoogle Scholar
  144. 144.
    Tangherlini, F. R., An Introduction to the General Theory of Relativity, N. Cimento Suppl. 20, 1-86 (1961).MathSciNetGoogle Scholar
  145. 145.
    Tiomno, J., Experimental Evidence Against a Lorentz Aether Theory (LAT), in Ruffini, R. (ed.), Proceedings of the Fourth Marcel Grossmann Meeting on General Relativity, Elsevier Sci. Publ. B.V., Amsterdam, 1986.Google Scholar
  146. 146.
    Torr D. G., and Kolen, P., Precision Measurement and Fundamental Constants II, in Taylor, B.N., and Phillips, W. D. (eds.), Nat. Bureau of Stand., Special Publication 617 ,675-679 (1984).Google Scholar
  147. 147.
    Torr, D. G. and Kolen, P., Misconception in Recent Paper on Special Relativity and Absolute Space Theories, Found. Phys. 12, 265-284 (1982).ADSCrossRefGoogle Scholar
  148. 148.
    Vigier, J. P.,New Non-Zero Photon Mass Interpretation of the Sagnac Effect as Direct Experimental Justification of the Langevin Paradox Phys. Lett. A 234, 75-85 (1997).zbMATHADSMathSciNetCrossRefGoogle Scholar
  149. 149.
    Volovik, G. E., The Universe in a Liquid Droplet, Clarendon Press, Oxford, 2003.Google Scholar
  150. 150.
    Weinberg, S., Gravitation and Cosmology, J. Wiley and Sons, Inc., New York, 1972.Google Scholar
  151. 151.
    Whittaker, E. T., A History of the Theories of Aether and Electricity, vols. I and II, Humanities Press, New York, 1973.Google Scholar
  152. 152.
    Will, C. M. Theory and Experiment in Gravitational Physics, Cambridge Univ. Press, Cambridge, 1980.Google Scholar
  153. 153.
    Weyl, H., Zur Gravitationstheorie, Ann. Phys. (Leipzig) 54, 117-145, (1917).ADSGoogle Scholar
  154. 154.
    Yilmaz, H., Test of Lorentz Covariance and Relativity of Simultaneity, Lett. N. Cimento 23, 265-268 (1978).Google Scholar
  155. 155.
    Zhang, Y. Z., Special Relativity and its Experimental Foundations, World Sci. Publ. Co, Singapore, 1997.Google Scholar
  156. 156.
    Zibinden, H., Brendel, J., Gisin, N., and Tittel, W., Experimental Test of Nonlocal Quantum Correlation in Relativistic Configurations, Phys. Rev. A 63, 022111 (2002).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Waldyr Alves RodriguesJr
    • 1
  • Edmundo Capelas de Oliveira
    • 1
  1. 1.Universidade Estadual Campinas, Instituto de Matemática Estatística e Computação CientíficaCampinasBrasil

Personalised recommendations