Some Differential Geometry

  • Waldyr Alves RodriguesJr
  • Edmundo Capelas de Oliveira
Part of the Lecture Notes in Physics book series (LNP, volume 722)


Dirac Operator Coordinate Function Dual Frame Lorentzian Manifold Ricci Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baekler, P., Hehl, F. W., and Mielke, E. W., Nonmetricity and Torsion: Facts and Fancies in Gauge Approaches to Gravity, in Ruffini, R. (ed.), Proc. 4th. Marcel Grossmann Meeting on General Relativity, North-Holland, Amsterdam, pp. 277-316, 1986.Google Scholar
  2. 2.
    Carroll, S. M., Lecture Notes in Relativity. [gr-qc/9712019].Google Scholar
  3. 3.
    Choquet-Bruhat, Y., DeWitt-Morette, C. and Dillard-Bleick, M., Analysis, Manifolds and Physics (revisited edition), North Holland Publ. Co., Amsterdam, 1982.zbMATHGoogle Scholar
  4. 4.
    Crumeyrolle, A., Orthogonal and Sympletic Clifford Algebras, Kluwer Acad. Publ., Dordrecht, 1990.Google Scholar
  5. 5.
    Drechsler, W., Poincaré Gauge Field Theory and Gravitation, Ann. Inst. H. Poincaré 37, 155-184 1982.Google Scholar
  6. 6.
    Fock, V., The Theory of Space, Time and Gravitation (2nd revised edition), Pergamon Press, Oxford, 1964.Google Scholar
  7. 7.
    Frankel, T., The Geometry of Physics, Cambridge University Press, Cambridge, 1997.zbMATHGoogle Scholar
  8. 8.
    Grishchuk, L.P., Petrov, A.N., and Popova, A.D., Exact Theory of the Einstein Gravitational Field in an Arbitrary Background Spacetime, Comm. Math. Phys. 94, 379-396 1984.CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Green, M. B., Schwarz, J. H. and Witten, E., Superstring Theory, vol. 2, Cambridge University Press, Cambridge, 1987.Google Scholar
  10. 10.
    Hawking, S. W. and Ellis, G. F. R., The Large Scale Structure of Spacetime, Cambridge University Press, Cambridge, 1973.CrossRefGoogle Scholar
  11. 11.
    Helh, F. W. and Datta, B. K., Nonlinear Spinor Equation and Asymmetric Connection in General Relativity, J. Math. Phys. 12, 798-808 1967.Google Scholar
  12. 12.
    Jehle, H., Relationship of Flux Quantization to Charge Quantization and the Electromagnetic Coupling Constant, Phys. Rev. D. 3, 306-345 1971CrossRefADSGoogle Scholar
  13. 13.
    Jehle, H., Flux Quantization and Particle Physics, Phys. Rev. D. 6, 441-457 1972.CrossRefADSGoogle Scholar
  14. 14.
    Kiehn, R. M., Non-Equilibrium and Irreversible Thermodynamics-from a Topological Perspective. Adventures in Applied Topology, vol. 1., 2003, Scholar
  15. 15.
    Logunov, A. A., Loskutov, Yu. M., and Mestvirishvili, M. A., Relativistic Theory of Gravity, Int. J. Mod. Phys. A 3, 2067-2099 1988.CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Lawson, H. Blaine, Jr. and Michelson, M. L., Spin Geometry, Princeton University Press, Princeton, 1989.zbMATHGoogle Scholar
  17. 17.
    Maia Jr., A., Recami, E., Rosa, M. A. F., Rodrigues Jr., W. A., Magnetic Monopoles Without String in the Kähler-Clifford Algebra Bundle, J. Math. Phys. 31, 502–505 1990.zbMATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Nakahara, M., Geometry, Topology and Physics, Institute of Physics Publ., Bristol and Philadelphia, 1990.zbMATHCrossRefGoogle Scholar
  19. 19.
    Osborn, H., Vector Bundles, vol. I, Acad. Press, New York, 1982.Google Scholar
  20. 20.
    Palais, R.S., The Geometrization of Physics, Lecture Notes from a Course at the National Tsing Hua University, Hsinchu, Taiwan, 1981.Google Scholar
  21. 21.
    Post, J., E., Quantum Reprogramming, Kluwer Acad. Publ., Dordrecht, 1995.Google Scholar
  22. 22.
    Rapoport, D. C., Riemann-Cartan-Weyl Quantum Geometry I. Laplacians and Supersymmetric Systems, Int. J. Theor. Phys. 35, 287-309 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    De Rham, G., Variétés Différentiables, Hermann, Paris, 1960.zbMATHGoogle Scholar
  24. 24.
    Rodrigues, W. A. Jr., and Souza, Q. A. G., An Ambigous Statement Called ‘Tetrad Postulate’ and the Correct Field Equations Satisfied by the Tetrad Fields, Int. J. Mod. Phys. D 14, 2095-2150 2005. []zbMATHCrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Rodrigues, W. A. Jr., and Oliveira, E. Capelas de, Maxwell and Dirac Equations in the Clifford and Spin-Clifford Bundles, Int. J. Theor. Phys. 29, 397–412 1990.zbMATHCrossRefGoogle Scholar
  26. 26.
    Rovelli, C., Loop Gravity, Cambridge University Press, Cambridge, 2004.˜symbol126rovelli/book.pdf.Google Scholar
  27. 27.
    Rosen, N., A Bimetric Theory of Gravitation, Gen. Rel. Grav. 4, 435-447 1973.CrossRefADSGoogle Scholar
  28. 28.
    Rosen, N., Some Schwarzchild Solutions and their Singularities, Found. Phys. 15 , 517-529 1985.CrossRefMathSciNetADSGoogle Scholar
  29. 29.
    Sachs, R. K., and Wu, H., General Relativity for Mathematicians, Springer-Verlag, New York, 1977.zbMATHGoogle Scholar
  30. 30.
    Schouten, J.A., Ricci Calculus, Springer-Verlag, Berlin, 1954.zbMATHGoogle Scholar
  31. 31.
    Sédov, L., Mécanique des Milleus Continus, Mir, Moscow, 1975.Google Scholar
  32. 32.
    Sokolnikoff, I. S., Mathematical Theory of Elasticity, McGraw-Hill Publ. Comp., New York, 1971.Google Scholar
  33. 33.
    Spivack, M., Calculus on Manifolds, W. A. Benjamin, New York, 1965.Google Scholar
  34. 34.
    Thirring, W. and Wallner, R., The Use of Exterior Forms in Einstein’s Gravitational Theory, Brazilian J. Phys. 8, 686-723 1978.Google Scholar
  35. 35.
    Thirring, W., Classical Field Theory, vol . 2, Springer-Verlag, New York, 1980.Google Scholar
  36. 36.
    Wallner, R. P., Exact Solutions in U4 Gravity. I. The Ansatz for Self Double Dual Curvature, Gen. Rel. Grav. 23, 623-629 1991.zbMATHCrossRefMathSciNetADSGoogle Scholar
  37. 37.
    Zorawski, M., Theorie Mathematiques des Dislocations, Dunod, Paris, 1967.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Waldyr Alves RodriguesJr
    • 1
  • Edmundo Capelas de Oliveira
    • 1
  1. 1.Universidade Estadual Campinas, Instituto de Matemática Estatística e Computação CientíficaCampinasBrasil

Personalised recommendations